And the relativistic mass and the relativistic kinetic energy are related by the formula:
E_k = m c^2 - m_0 c^2
Einstein wanted to omit the unnatural second term on the right-hand side, whose only purpose is to make the energy at rest zero, and to declare that the particle has a total energy which obeys:
E = m c^2
which is a sum of the rest energy m_0 c^2 and the kinetic energy. This total energy is mathematically more elegant, and fits better with the momentum in relativity. But to come to this conclusion, Einstein needed to think carefully about collisions. This expression for the energy implied that matter at rest has a huge amount of energy, and it is not clear whether this energy is physically real, or just a mathematical artifact with no physical meaning.
In a collision process where all the rest-masses are the same at the beginning as at the end, either expression for the energy is conserved. The two expressions only differ by a constant which is the same at the beginning and at the end of the collision. Still, by analyzing the situation where particles are thrown off a heavy central particle, it is easy to see that the inertia of the central particle is reduced by the total energy emitted. This allowed Einstein to conclude that the inertia of a heavy particle is increased or diminished according to the energy it absorbs or emits.