gentsagree
- 93
- 1
So, I'm trying to show that by duality B_{i}\rightarrow E_{i}, using tensor notation. I've done it in a different way, and it works (starting from \overline{F}_{ij}, the dual of F_ij), but I would like to get it from B_i directly. Where am I going wrong?
This is what I did:
B_{i}=\frac{1}{2}\epsilon_{ijk}F^{jk}\rightarrow B'_{i}=\frac{1}{2}\epsilon_{ijk}(i\overline{F}^{jk})=\frac{1}{2}i\epsilon_{ijk}(-\frac{1}{2}i\epsilon^{jk\rho\sigma}F_{\rho\sigma})
=\frac{1}{4}\epsilon_{ijk}\epsilon^{jk\rho\sigma}F_{\rho\sigma}=\frac{1}{4}\epsilon_{0ijk}\epsilon^{jk0i}F_{0i}
where in the last line I have inserted an extra 0-index in the Levi-Civita symbol (although I am not sure I know how to deal with zeros with epsilon), and made the substitution (\rho,\sigma)\rightarrow(0,i).
However I calculate this to be -\frac{3}{2}F_{i0} when it should be just F_{i0}=E_{i}
Any advice?
This is what I did:
B_{i}=\frac{1}{2}\epsilon_{ijk}F^{jk}\rightarrow B'_{i}=\frac{1}{2}\epsilon_{ijk}(i\overline{F}^{jk})=\frac{1}{2}i\epsilon_{ijk}(-\frac{1}{2}i\epsilon^{jk\rho\sigma}F_{\rho\sigma})
=\frac{1}{4}\epsilon_{ijk}\epsilon^{jk\rho\sigma}F_{\rho\sigma}=\frac{1}{4}\epsilon_{0ijk}\epsilon^{jk0i}F_{0i}
where in the last line I have inserted an extra 0-index in the Levi-Civita symbol (although I am not sure I know how to deal with zeros with epsilon), and made the substitution (\rho,\sigma)\rightarrow(0,i).
However I calculate this to be -\frac{3}{2}F_{i0} when it should be just F_{i0}=E_{i}
Any advice?