Understanding Emergent Gravity & Spacetime: Resources for Laypeople

  • Thread starter Thread starter C_Dawg
  • Start date Start date
  • Tags Tags
    Emergent Gravity
C_Dawg
Messages
6
Reaction score
1
I've recently heard for the first time about the topics of Emergent Gravity and Emergent Spacetime.

But I cannot find any resource that explains these ideas in a way that lay people can understand.

If you know of one, please post the link, or write an explanation in simple terms. I've read a lot about Einstein's work, so I know the broad principles of Special and General Relativity.

Thanks!
 
Physics news on Phys.org
Check out the Beyond the Standard Model forum. This has been discussed there recently. You will get better responses in that forum than in this one.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top