Understanding Feedback Control in Klystrons

AI Thread Summary
The discussion centers on the behavior of klystrons when feedback is applied to their input, contrasting them with magnetrons, which operate solely as oscillators. It highlights the complexities of feedback in high-frequency tubes like klystrons, questioning how much feedback can be utilized before the device transitions from amplifier to oscillator. The conversation touches on the methods of reducing feedback amplitude in RF applications, noting that feedback control mechanisms are crucial for maintaining amplifier functionality. Additionally, it mentions the potential for any amplifier to become an oscillator with the right feedback configuration, particularly referencing reflex klystrons for oscillation purposes. The risks of oscillation when improving amplifier performance through feedback adjustments are also noted.
artis
Messages
1,479
Reaction score
976
I was puzzled when I thought about what happens to a klystron when it's output is fed back to it's input.

This doesn't apply to magnetrons because they cannot be driven like amplifiers so they are oscillators by definition.
I've dealt with audio amplifiers mostly and there almost always feedback is used whether positive or negative.

But I do not know how it is with high frequency tubes like klystrons , how much feedback you can use and still have an amplifier and when it becomes an oscillator that then resonates at some frequency determined by the geometry of the tube or it's cavities.
At lower frequencies in audio amplifiers for example feedback is decreased in amplitude by passing it through resistors and then fed back into the input stage. But I am not familiar with how feedback is decreased in amplitude in RF applications.

What are the feedback control mechanisms for a klystron or other RF tube for example?Another question I am thinking about is how one would couple a wire loop from a toroidal (or any other shaped core) to a waveguide?
 
Last edited:
Engineering news on Phys.org
Any amplifier can become an oscillator by arranging feedback with a loop gain of unity at only the required frequency. There are too many methods of adjusting the frequency to list.
If you want to make an oscillator from a klystron, select a reflex klystron.

Improving an amplifier, by adjusting the feedback, is fraught with a high probability of oscillation. The named oscillator eponyms, are failed amplifier designers.
 
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Electromagnet magnetic field issue'
Hi Guys We are a bunch a mechanical engineers trying to build a simple electromagnet. Our design is based on a very similar magnet. However, our version is about 10 times less magnetic and we are wondering why. Our coil has exactly same length, same number of layers and turns. What is possibly wrong? PIN and bracket are made of iron and are in electrical contact, exactly like the reference design. Any help will be appreciated. Thanks. edit: even same wire diameter and coil was wounded by a...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top