Understanding Field Shift: The Doppler Effect and the Speed of Gravity Explained

  • Thread starter Thread starter atom888
  • Start date Start date
  • Tags Tags
    Field Shift
atom888
Messages
91
Reaction score
0
Wiki
An observed redshift due to the Doppler effect occurs whenever a light source moves away from the observer, corresponding to the Doppler shift that changes the perceived frequency of sound waves

In the context of classical theories of gravitation, the speed of gravity refers to the speed at which a gravitational field propagates. This is the speed at which changes in the distribution of energy and momentum result in noticeable changes in the gravitational field which they produce

In 1900 Hendrik Lorentz tried to explain gravity on the basis of his Lorentz ether theory and the Maxwell equations. After proposing (and rejecting) a Le Sage type model, he assumed like Ottaviano Fabrizio Mossotti and Johann Karl Friedrich Zöllner that the attraction of opposite charged particles is stronger than the repulsion of equal charged particles. The resulting net force is exactly what is known as universal gravitation, in which the speed of gravity is that of light

If speed susceptible to Doppler's effect. Why shouldn't field since we're so determine they have a speed?
 
Physics news on Phys.org
You mean a gravitational field and gravitational waves? I suppose gravitational waves would show doppler shift.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top