yungman
- 5,741
- 294
Harmonic function satisfies Laplace equation and have continuous 1st and 2nd partial derivatives. Laplace equation is \nabla^2 u=0.
Using Green's 1st identity:
\int_{\Omega} v \nabla^2 u \;+\; \nabla u \;\cdot \; \nabla v \; dx\;dy \;=\; \int_{\Gamma} v\frac{\partial u}{\partial n} \; ds
v=1 \;\Rightarrow\; \int_{\Omega} \nabla^2 u \; dx\;dy \;=\; \int_{\Gamma} \frac{\partial u}{\partial n} \; ds = 0 \;\hbox { if } \;u \;\hbox{ is a harmonic function .}
Why is it equal zero if u is harmonic function? Why is:
\int_{\Omega} \nabla^2 u \; dx\;dy =0 \hbox { if } \nabla^2 u =0
Or more basic question:
What is \int_{\Gamma} 0 dxdy? Is it not zero?
Using Green's 1st identity:
\int_{\Omega} v \nabla^2 u \;+\; \nabla u \;\cdot \; \nabla v \; dx\;dy \;=\; \int_{\Gamma} v\frac{\partial u}{\partial n} \; ds
v=1 \;\Rightarrow\; \int_{\Omega} \nabla^2 u \; dx\;dy \;=\; \int_{\Gamma} \frac{\partial u}{\partial n} \; ds = 0 \;\hbox { if } \;u \;\hbox{ is a harmonic function .}
Why is it equal zero if u is harmonic function? Why is:
\int_{\Omega} \nabla^2 u \; dx\;dy =0 \hbox { if } \nabla^2 u =0
Or more basic question:
What is \int_{\Gamma} 0 dxdy? Is it not zero?