zetafunction
- 371
- 0
let be the integral equation
h(x)= \int_{0}^{\infty} \frac{dy}{y}K(y/x)f(y)
here the kernel is always a positive , then if h(x)=O(x^{a}) and the integral
\int_{0}^{\infty} \frac{dy}{y}K(y)y^{a} exists and is a positive real number then also f(x)= O(x^{a})
h(x)= \int_{0}^{\infty} \frac{dy}{y}K(y/x)f(y)
here the kernel is always a positive , then if h(x)=O(x^{a}) and the integral
\int_{0}^{\infty} \frac{dy}{y}K(y)y^{a} exists and is a positive real number then also f(x)= O(x^{a})