MHB Understanding Ke Logic Rules & Finding Contradictions

  • Thread starter Thread starter lyd123
  • Start date Start date
  • Tags Tags
    Logic Rules
lyd123
Messages
11
Reaction score
0
Hi, the question and Ke logic rules are attached.

This is my attempt at the question.

$1. P \land (R\implies Q) $ Premise
$2. ( P \land Q ) \implies \lnot S) $ Premise
$3. ( P \land S) \implies R) $ Premise
$4. \lnot S $ Conclusion
$5. P \land Q$ $ \beta 2,4$
$6. P $ $ \alpha 5$
$7. Q$ $ \alpha 5$
$8. R\implies Q $ $ \alpha 1$

I don't think the lines I wrote after this make a lot of sense. Usually a contradiction would be found, but in this case I don't seem to find a contradiction. I think maybe I have to negate the conclusion, I thought it was already negated because of the \lnot. But how do I know when the argument form is valid (invalid being if there is a contradiction).Thank you for any help. :)

View attachment 8735
View attachment 8736
 

Attachments

  • 2019-01-03.png
    2019-01-03.png
    5.3 KB · Views: 128
  • 2019-01-03 (1).png
    2019-01-03 (1).png
    6.9 KB · Views: 176
Physics news on Phys.org
I assume that $\neg S$ is the original conclusion, not its negation.

You cannot derive $P\land Q$ from $P\land Q\implies \neg S$ and $\neg S$.

To prove $\neg S$, one must use the law of excluded middle, or the branching rule. From premise 1 we have $P$ and $R\implies Q$. If $S$, then we get $R$ from premise 3, $Q$ from premise 1 and finally $\neg S$ from premise 2. If $\neg S$, then nothing is left to do.
 
Thank you, I understand now.If an argument was valid, how would we know? For example, in this case if the the original was S and the negated conclusion is ¬S ?

1.P∧(R⟹Q) Premise
2.(P∧Q)⟹¬S Premise
3.(P∧S)⟹R Premise
4.¬S Negated Conclusion
 
These premises do not imply $S$. The easiest way to see this is to find a counterexample, i.e., an assignment of truth values to variables that makes all premises true and the conclusion false. In this case it is $R=Q=S=F$ and $P=T$.
 
Evgeny.Makarov said:
To prove $\neg S$, one must use the law of excluded middle, or the branching rule

I suppose you mean : $ S\vee\neg S$

Evgeny.Makarov said:
If $S$, then we get $R$ from premise 3

I suppose you mean from P and S we get : $P\wedge S$ and then using premise 3 and α rules (Modus Ponens) we get $R$

If yes, there is no rule in α or β rules to account for: $P$,$S$ $\Rightarrow P\wedge Q$
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Back
Top