Understanding Light Slowing in a Medium

  • Thread starter Thread starter math_04
  • Start date Start date
  • Tags Tags
    Light Medium
AI Thread Summary
The speed of light is a constant in a vacuum, denoted as c, but it appears slower in a medium due to interactions with particles. When light enters a material, photons are absorbed by particles, which then re-emit the energy, causing a delay in propagation. This process of absorption and re-emission results in a net speed of light that is less than c as it travels through the medium. The extent of this reduction depends on the material's properties, and in some cases, experiments have shown that light can be effectively captured, reducing its speed to zero. Understanding these interactions clarifies how light behaves differently in various environments while still adhering to the principles of special relativity.
math_04
Messages
21
Reaction score
0
Could someone please explain how the speed of light, a supposed constant, can be slowed down in a medium? I checked Wikipedia and all they had to offer was this

"In passing through materials, the observed speed of light differs from c. When light enters materials its energy is absorbed. In the case of transparent materials (dielectrics) this energy is quickly re-radiated. However, this absorption and re-radiation introduces a delay. As light propagates through dielectric material it undergoes continuous absorption and re-radiation. Therefore when the speed of light in a medium is said to be less than c, this should be read as the speed of energy propagation at the macroscopic level. At the microscopic level electromagnetic waves always travel at c."

I guess all I need is a clearer explanation.

Thanks.
 
Science news on Phys.org
So first let's talk about light in vacuum. Its speed (magnitude of the velocity) is a constant value, which we conventionally call c (for celeritas). This means that with whatever velocity you move, you always see a light ray pass at c. From the theory of special relativity it is a consequence, that massive matter can only travel at a speed strictly smaller than c and light must always travel precisely at c.

In matter, the situation is a bit different. For simplicity, let us consider light as built up from little energy packets called photons. If we zoom in on a material very closely, then we mostly see a vacuum, with for example an electron or atomic nucleus spread out here and there. Now if you send a photon in, it will mostly just travel at the "speed of light", i.e. the vacuum speed c, through the big empty space in between the particles. However, occasionally the photon will hit a particle. Since the photon is just a packet of energy, the particle can absorb this, thereby going into a higher energy state. So now the photon is gone and the particle carries a little bit of extra energy compared to its "normal" state.

If the photon has precisely the right energy, the particle will feel fine and stay that way. Since photon energy is directly related to the color of the light we see, we won't see the photon coming out and we say that the material absorbs the light of that color. For most energies (colors) however, the particle doesn't really feel at ease carrying around that extra energy. Therefore, after some time, it will get rid of it. How? Well, it simply puts it in a new energy packet (photon) and shoots it off to propagate at c through the vacuum. If you repeat this process, say, 1023 times, then you will see that each absorption and re-emission takes a little bit of time. So when you average that out over the whole passage through the medium, you will find that the nett speed (I would say: of the photon, although it is technically not the "same" photon as the one that went in -- insert discussion about quantum mechanics and discernability here -- anyway, the nett speed) is a little less than c, because it took more time than it would in vacuum to propagate through.

Now you can imagine that depending on the properties of the matter, the velocity gets reduces a little or a lot (but never increased). Actually I think there have been experiments where they have succeeded in "capturing" a photon inside the material (reducing the velocity to 0). As a consequence, it is possible to let something move through the material which exceeds the speed of light! This is not a contradiction with special relativity, but a consequence of the sloppy "popular" formulation that "nothing can travel faster than light", which usually leaves out "in vacuum".

Does that help?
 
This comes up so often that we have an FAQ about it:

https://www.physicsforums.com/showpost.php?p=899393&postcount=4
 
Last edited by a moderator:
thanks, yea i understand it better now.
 
Thread 'A quartet of epi-illumination methods'
Well, it took almost 20 years (!!!), but I finally obtained a set of epi-phase microscope objectives (Zeiss). The principles of epi-phase contrast is nearly identical to transillumination phase contrast, but the phase ring is a 1/8 wave retarder rather than a 1/4 wave retarder (because with epi-illumination, the light passes through the ring twice). This method was popular only for a very short period of time before epi-DIC (differential interference contrast) became widely available. So...
I am currently undertaking a research internship where I am modelling the heating of silicon wafers with a 515 nm femtosecond laser. In order to increase the absorption of the laser into the oxide layer on top of the wafer it was suggested we use gold nanoparticles. I was tasked with modelling the optical properties of a 5nm gold nanoparticle, in particular the absorption cross section, using COMSOL Multiphysics. My model seems to be getting correct values for the absorption coefficient and...

Similar threads

Back
Top