MHB Understanding Lusin's Theorem for $\mathbb{R}$ and Its Proof

  • Thread starter Thread starter joypav
  • Start date Start date
  • Tags Tags
    Proof Theorem
joypav
Messages
149
Reaction score
0
Problem:
Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be measurable. Then there exists a sequence of continuous functions $(g_n)$ such that $limg_n(x)$ exists for all $x \in \mathbb{R}$ and $limg_n(x) = f(x)$ a.e. x.

Is this like Lusin's Theorem? Lusin's theorem for the real numbers? If so, how does this change the proof?
 
Physics news on Phys.org
Here is my proof (posting for completeness but if you have corrections feel free to comment!).

Proof:
Apply the Approximation Theorem to $f$.
Let $(f_n)$ be a sequence of simple functions such that $f_n \rightarrow f$ point wise.
For every $n \in \Bbb{N}$, let
$F_n \subset E$ be closed such that $m(R - F_n) < \frac{\epsilon}{2^k}$ such that $f_n |_{F_n}$ is continuous.
(By Egorov's) $\implies \exists B \subset R$ such that $m(B) < \epsilon$ and $f_n \rightarrow f$ uniformly on $R - B$.
WLOG, assume $B$ is open.
Then $R - B$ is closed.
Let $F_0 = R - B$.

Claim: $f |_{F_\infty}$ is continuous.
A uniformly convergent sequence of continuous functions is continuous
$\implies f |_{F_\infty} = F_0 \cap \cap_{k}F_k$ is continuous.
Then,
$m(E - F_\infty) \leq \sum_{n=0}^{\infty}m(E - F_n) < 2\epsilon$
$\implies$ We've found $F \subset R$ closed such that $m(R - F) < \epsilon$ and $f |_F$ is continuous.

Now, consider our set F.
$\exists G_1, G_2,...$ open and pairwise disjoint such that $F^c = \cup_{i \in \Bbb{N}}G_i$.

Let $G_i = (a_i, b_i)$. Let,
$g(x) = $
$f(x), x \in F$
$(\frac{b_i - x}{b_i - a_i})f(a_i) + (\frac{x - a_i}{b_i - a_i})f(b_i), x \in (a_i, b_i)$

Then,
$f |_F$ continuous $\implies g |_F$ is continuous.
We extend $g$ so that it is also continuous on $F^c$ by the definition for $g$ given.
We conclude that,
$g : R \rightarrow R$ is continuous and $g |_F = f$.
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.
Back
Top