MHB How Do You Guess a Particular Solution for This Differential Equation?

  • Thread starter Thread starter azuralshadow
  • Start date Start date
  • Tags Tags
    Partial
azuralshadow
Messages
1
Reaction score
0
hello, I've spent a good couple hours diving back into the world of differential equations after being out of the game for a good 2 years. I started getting a hang of solving them till i came across this problem:
Solve the following differential equation with the 3 given cases, all of the systems have a sinusoidal input 'y' and start undeflected and at rest.
X'' + 2(A)(B)X' + (B^2)X = y
Initial conditions x' = 0 , x = 0 , y = sin(t)

Case 1: A = 0.5 , B = 10
Case 2: A = 1.0 , B = 10
Case 3: A = 2.0 , B = 10

Honestly the part I am having the hardest time doing is figuring out how to make a good guess at a particle solution after that i understand how to get to a general solution.
 
Physics news on Phys.org
azuralshadow said:
hello, I've spent a good couple hours diving back into the world of differential equations after being out of the game for a good 2 years. I started getting a hang of solving them till i came across this problem:
Solve the following differential equation with the 3 given cases, all of the systems have a sinusoidal input 'y' and start undeflected and at rest.
X'' + 2(A)(B)X' + (B^2)X = y
Initial conditions x' = 0 , x = 0 , y = sin(t)

Case 1: A = 0.5 , B = 10
Case 2: A = 1.0 , B = 10
Case 3: A = 2.0 , B = 10

Honestly the part I am having the hardest time doing is figuring out how to make a good guess at a particle solution after that i understand how to get to a general solution.

Hi azuralshadow, :)

This can be solved using the method of Undetermined Coefficients. Take the particular solution as \(y_{p}=C\sin t+D\cos t\) where \(C\) and \(D\) are constants to be determined. You can find some useful ideas here(Refer to example 3).

Kind Regards,
Sudharaka.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...

Similar threads

Back
Top