Understanding Probability in Lottery Odds: A Misconception

  • Thread starter Thread starter mlovas
  • Start date Start date
  • Tags Tags
    lottery

Who is correct

  • mary is correct

    Votes: 0 0.0%
  • mary's husband is correct

    Votes: 2 100.0%
  • you are both right

    Votes: 0 0.0%
  • you are both wrong

    Votes: 0 0.0%

  • Total voters
    2
mlovas
Messages
2
Reaction score
0
My husband and I disagree. A hospital lottery claims the odds are 1 in 3 to win a prize. There are 72,000 prizes and 250,000 tickets.

Assuming a winning ticket is removed from the pot for the next draw, I say the odds or chances of winning are at best 1 in 178,000. If winning tickets go back in for each subsequent draw, I say your odds of winning never exceed 1 in 250,000 notwithstanding that there are 72,000 draws.

My husband says the odds are 1 in 3 (approximately).

Please setlle this dispute. I believe the only way the odds can be 1 in 3 is if the 250,000 tickets are separated into 72,000 groups of three tickets and there is a draw from each of the 72,000 groups of 3 tickets for a prize. I am tired of people not understanding that this is highly misleading telling people they have a 1 in 3 chance of winning a prize. Am I wrong?

Thanks.

Mary
 
Mathematics news on Phys.org
If someone can't win a second prize, then there is approximately a 1 in 3 chance of winning (actually, it's 1 in 250,000/72,000 odds). It literally means 1 in every 3 people will win a prize. This is very very likely the way the lottery is held. What "1 in Y chances" means in the most literal sense is that out of every Y number of people, 1 will win. So if you literally think about spreading out 72,000 prizes amongst 250,000 people, you clearly have 1 in 3 odds - that is, 1 out of every 3 people or so will win a prize).

If someone is allowed to win a second prize, the odds become smaller, but nothing crazy like 1 in 172,000 or whatever. I believe it becomes 1 in roughly 4 chance that you'll win at least once.

Think about your logic. What if there were 249,998 prizes and 250,000 entries? Based on your logic, you have 1 in 2 odds. Does it really make sense that the odds of you winning one of those 249,998 prizes are 50/50?
 
I still don't see how the mathematical probability of your ticket being drawn to win a prize increases over 1 in 250,000 for each separate draw for a prize, each draw being a separate event.

Mary
 
mlovas said:
I still don't see how the mathematical probability of your ticket being drawn to win a prize increases over 1 in 250,000 for each separate draw for a prize, each draw being a separate event.

Mary

This is what I figured you were thinking about but wasn't sure. Think of it this way - label each prize as Prize 1, Prize 2, 3, 4... Prize 72,000. The 1 in 250,000 figure that you're thinking about is specifically "What are my odds of winning Prize #X". So assuming people are allowed to win as many times as they want, then you have a 1 in 250,000 odds of winning Prize #20,350. However, it is SPECIFICALLY prize #20,350. It is overwhelmingly unlikely you will win a specific prize. When they say "you have 1 in 3 odds of winning", all that is being said is that you have a 1 in 3 chance of winning A prize, not a specific prize.
 
Of course, the great majority of those prizes are worth very little.
 
mlovas, I think your misconception comes from the classic misconceptions that lead people to do stuff such as betting on reds in a game of roulette when the last 3-4 results were black. Obviously the previous results don't affect the probabilities of the next ball stopping on a black or red color.

This is very badly explained, english isn't my primary language. However it would be correct to state the chances of winning are about 1 in 3 in this case. As someone else said, you were trying to predict your chances of winning a specific prize out of the 72000. Your chances of winning A prize and not one of the specific prizes are much higher, obviously.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top