I Understanding Relativistic Ptcl Lagrangian: S1 vs. S2

michael879
Messages
696
Reaction score
7
Can someone help me understand how the following two actions are related?
S_1 = \int \left(-\dfrac{1}{2}mg_{\mu\nu}\dot{x}^\mu\dot{x}^\nu - U\right) d\tau
S_2 = \int \left(-m\sqrt{g_{\mu\nu}\dot{x}^\mu\dot{x}^\nu} - U\right) d\tau
Both of them lead to the correct geodesic equation as the Euler-Lagrange equations, as long as τ is affine (S2 requires some additional assumptions to get rid of an additional factor that pops up), but I can't for the life of me explain the factor of 2 difference. I've seen both of them used in various places, but I can't seem to find any explanation of the difference between them. I also can't see any transformation (for a particle with fixed mass m under a potential U) that would show they're equivalent...

S2 has a straightforward 'derivation' from the action S=-m\int{ds} for proper time s, but it seems to breakdown for massless particles. S1 on the other hand can be made to easily work for null curves, by treating m as the particles energy rather than its rest mass, but doesn't have any derivation I'm aware of.

*note* for more context, the problem I'm seeing is that these two actions are related very differently to the stress-energy tensor. I find that after solving for the stress energy tensor, S_1=-\frac{1}{2}T^\mu_\mu but S_2 = -T. That means that for S1, the Einstein-Hilbert action exactly cancels out the particle's, which is behavior I would expect (since 2L_{EH}=R^\mu_\mu=T^\mu_\mu). For S2 though, the two do not cancel out...
 
Physics news on Phys.org
They have the same extrema. So from the EOM they are equivalent. You can compare this to e.g. a function f(x) and ln[f(x)], which also have the same extrema.
 
So you're saying there's no difference? You can just square any piece of the Lagrangian and it won't change anything?? I understand that you could square the entire Lagrangian, but there are other parts here (e.g. the Einstein-Hilbert Lagrangian, the potential term, and terms for whatever else may be going on in the universe). And if they're truly equivalent, why would anyone ever use S2?? Surely S1 is much simpler to work with...
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top