Somefantastik
- 226
- 0
u^{*}(r^{*},\theta^{*},\phi^{*}) = \frac{a}{r^{*}}u(\frac{a^{2}}{r^{*}},\theta^{*},\phi^{*})
\frac{\partial u^{*}}{\partial r^{*}}= \frac{a}{r^{*}}u_{r^{*}} \left( \frac{a^{2}}{r^{*}},\theta^{*},\phi^{*}\right) \left( -\frac{a^{2}}{r^{2*}} \right) - \frac{a}{r^{*2}} u \left( \frac{a^{2}}{r^{*}},\theta^{*},\phi^{*}\right)
where u_{r^{*}} is the partial of u w.r.t r*
Did I do this right? Is there a better way of representing u_{r^{*}} \left( \frac{a^{2}}{r^{*}},\theta^{*},\phi^{*}\right)
\frac{\partial u^{*}}{\partial r^{*}}= \frac{a}{r^{*}}u_{r^{*}} \left( \frac{a^{2}}{r^{*}},\theta^{*},\phi^{*}\right) \left( -\frac{a^{2}}{r^{2*}} \right) - \frac{a}{r^{*2}} u \left( \frac{a^{2}}{r^{*}},\theta^{*},\phi^{*}\right)
where u_{r^{*}} is the partial of u w.r.t r*
Did I do this right? Is there a better way of representing u_{r^{*}} \left( \frac{a^{2}}{r^{*}},\theta^{*},\phi^{*}\right)
Last edited: