Understanding the Expansion of P(A)

  • Thread starter Thread starter Avichal
  • Start date Start date
  • Tags Tags
    Expansion
Avichal
Messages
294
Reaction score
0
P(B/A) = P(A/B).P(B) / P(A)

Later we expand P(A) as P(A/B).P(B) + P(A/B).P(B) ... B is complement of B

I don't understand how we can expand P(A) like that. Doesn't that assume that A ℂ B?
 
Physics news on Phys.org
Think about what it is saying. The probability that A happens is the probability that A happens given that B happens plus the probability that A happens given that B doesn't happen. Both cases are needed to cover all possibilities.
 
Well basically what my book says is that : -
P(A) = P(A/B1).P(B1) + P(A/B2).P(B2) + ... + P(A/Bn).P(Bn)

Doesn't this assume that B1 U B2 ... U Bn is a super-set of A?
 
Avichal said:
Doesn't this assume that B1 U B2 ... U Bn is a super-set of A?
Of course.

Your text should have specified that B1, B2, ···, Bn are a set of mutually disjoint subsets of the universe U of possible outcomes and that B1B2 ∪ ··· ∪ Bn=U. The set A must be a subset of this universe of outcomes U; otherwise it doesn't even make sense to talk about P(B1|A).
 
D H said:
Of course.

Your text should have specified that B1, B2, ···, Bn are a set of mutually disjoint subsets of the universe U of possible outcomes and that B1B2 ∪ ··· ∪ Bn=U. The set A must be a subset of this universe of outcomes U; otherwise it doesn't even make sense to talk about P(B1|A).

It didn't. Anyways, thank you. This clears my doubt.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top