I Understanding the Form of the Y(2,0) Spherical Harmonic

Archeon
Messages
7
Reaction score
0
I am basically just rewriting a question that was posted on other forums.
While watching videos of a MIT lecture on the eigenstates of angular momentum (video: '16. Eigenstates of the Angular Momentum II' by MIT OpenCourseWare) the professor visualized different spherical harmonics for low values of the quantum number l. He showed that for Y(l = 1, m = 0) the function has the following form:
HmK2L.png

explaining that since m=0 there is no angular momentum L_z and the probability of finding it in the x-y plane is practically zero.
He then went on to show the Y(l=2, m=0) state, as seen below:
6gfDh.png

This strikes me as odd, however, as the disk around the z-axis would imply to me that there is a good probability that the particle is spinning along the z-axis and as a result carries some angular momentum L_z > 0. How, if at all possible, can this phenomenon be explained intuitively?

Thanks in advance
 
Physics news on Phys.org
Archeon said:
This strikes me as odd, however, as the disk around the z-axis would imply to me that there is a good probability that the particle is spinning along the z-axis and as a result carries some angular momentum L_z > 0. How, if at all possible, can this phenomenon be explained intuitively?

Thanks in advance

The disk around the z-axis implies that the particle might be found there. It doesn't mean that the particle is following any sort of orbit that has that shape.

More generally, you can't really say the particle has an orbit at all (not in the classical sense).
 
Archeon said:
This strikes me as odd, however, as the disk around the z-axis would imply to me that there is a good probability that the particle is spinning along the z-axis and as a result carries some angular momentum L_z > 0. How, if at all possible, can this phenomenon be explained intuitively?
You have to let go of classical pictures. The particle is not moving inside the orbital. They represent stationary states.
 
  • Like
Likes vanhees71
I see. Thanks for the clear answers.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top