yuiop
- 3,962
- 20
With reference to this wikipedia article http://en.wikipedia.org/wiki/Lemaitre_metric
it states
r = \left(\frac{3}{2}(p-\tau)\right)^{2/3}\ r_g^{1/3}
and
r_g = \frac{3}{2}(p-\tau)
Those two statements put together imply
r = \left(\frac{3}{2}(p-\tau)\right)^{2/3} \left(\frac{3}{2}(p-\tau)\right)^{1/3}
r = r_g
This in turn implies the Schwarzschild radial variable r is equal to the constant Schwarzschild radius r_s = 2gm/c^2 and this leads to the Lemaitre metric being equivalent to
ds^2 = d\tau^2 - dp^2
and when r_g/r = 1 is inserted into the Lemaitre coordinate definitions:
\begin{cases}<br /> d\tau = dt + \sqrt{\frac{r_{g}}{r}}\frac{1}{(1-\frac{r_{g}}{r})}dr~,\\<br /> d\rho = dt + \sqrt{\frac{r}{r_{g}}}\frac{1}{(1-\frac{r_{g}}{r})}dr~.<br /> \end{cases}
the result is:
\begin{cases}<br /> d\tau = dt \pm\ \frac{dr}{0}~,\\<br /> d\rho = dt \pm\ \frac{dr}{0}~.<br /> \end{cases}
Obviously I am missing something important here. Can anyone clarify?
it states
r = \left(\frac{3}{2}(p-\tau)\right)^{2/3}\ r_g^{1/3}
and
r_g = \frac{3}{2}(p-\tau)
Those two statements put together imply
r = \left(\frac{3}{2}(p-\tau)\right)^{2/3} \left(\frac{3}{2}(p-\tau)\right)^{1/3}
r = r_g
This in turn implies the Schwarzschild radial variable r is equal to the constant Schwarzschild radius r_s = 2gm/c^2 and this leads to the Lemaitre metric being equivalent to
ds^2 = d\tau^2 - dp^2
and when r_g/r = 1 is inserted into the Lemaitre coordinate definitions:
\begin{cases}<br /> d\tau = dt + \sqrt{\frac{r_{g}}{r}}\frac{1}{(1-\frac{r_{g}}{r})}dr~,\\<br /> d\rho = dt + \sqrt{\frac{r}{r_{g}}}\frac{1}{(1-\frac{r_{g}}{r})}dr~.<br /> \end{cases}
the result is:
\begin{cases}<br /> d\tau = dt \pm\ \frac{dr}{0}~,\\<br /> d\rho = dt \pm\ \frac{dr}{0}~.<br /> \end{cases}
Obviously I am missing something important here. Can anyone clarify?
Last edited: