coldboyqn
- 8
- 0
I am doing something that I sure that I'm wrong, but I cannot realize the error. See as below:
<br /> \frac{1}{x}=x\times\frac{1}{(x^2)} ________\(1\)<br />
Taylor Series of \frac{1}{x^2}:
<br /> \frac{1}{x^2}=\frac{1}{\alpha}+\sum_{k=1}^\infty g(k)(x-\alpha)^k<br />
In which
k is from 1 to infinity,
<br /> g(k)=(-1)^k\times\frac{(k+1)!}{\alpha^{(k+2)}k!}\\\\<br /> =\frac{(-1)^k\times(k+1)}{\alpha^{(k+2)}}<br />
Substitute Taylor Series of 1/x^2 into (1), we obtain:
\frac{1}{x}=\frac{x}{\alpha}+\sum_{k=1}^\infty g(k)(x-\alpha)^k
So: \lim_{\substack{x\rightarrow 0}} \frac{1}{x}=\lim_{\substack{x\rightarrow 0}} (\frac{x}{\alpha}+\sum_{k=1}^\infty x\times g(k)(x-\alpha)^k)=0 (??!?)<br />
Can anyone show me, please?
<br /> \frac{1}{x}=x\times\frac{1}{(x^2)} ________\(1\)<br />
Taylor Series of \frac{1}{x^2}:
<br /> \frac{1}{x^2}=\frac{1}{\alpha}+\sum_{k=1}^\infty g(k)(x-\alpha)^k<br />
In which
k is from 1 to infinity,
<br /> g(k)=(-1)^k\times\frac{(k+1)!}{\alpha^{(k+2)}k!}\\\\<br /> =\frac{(-1)^k\times(k+1)}{\alpha^{(k+2)}}<br />
Substitute Taylor Series of 1/x^2 into (1), we obtain:
\frac{1}{x}=\frac{x}{\alpha}+\sum_{k=1}^\infty g(k)(x-\alpha)^k
So: \lim_{\substack{x\rightarrow 0}} \frac{1}{x}=\lim_{\substack{x\rightarrow 0}} (\frac{x}{\alpha}+\sum_{k=1}^\infty x\times g(k)(x-\alpha)^k)=0 (??!?)<br />
Can anyone show me, please?
Last edited: