A Understanding the LSZ Reduction Formula in Quantum Field Theory

  • A
  • Thread starter Thread starter bengeof
  • Start date Start date
  • Tags Tags
    Formula Reduction
bengeof
My background is QM as done in Griffiths( So yes I have a background of operators, observables and scattering matrix), Classical fields as done in Goldstein and Particle physics as in Griffiths. Griffiths actually works out Feynman rules for QED and QCD. I've started QFT with Peskin and Schroeder and Zee's QFT in a nutshell. Need help in understanding LSZ reduction formula. Is it some sort of propagator formula ?
 
Physics news on Phys.org
The LSZ formula relates scattering amplitudes to the vacuum-expectation value of a time-ordered product of fields.

I prefer Srednicki's explanation of LSZ to P&S and Zee.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top