Understanding the Solution for Finding the Sum of Digits of m

Click For Summary
The discussion centers on finding the sum of digits of m, where m represents the count of numbers from 1 to 2014 that can be expressed as the difference of squares of two non-negative integers. It is established that all odd numbers can be represented as such, leading to 1007 odd numbers in the set. Additionally, specific even numbers, namely the cubes of 2, 4, 6, 8, 10, and 12, also qualify, contributing 6 even numbers. This results in a total of m = 1013, with the sum of its digits equaling 5. The conversation also touches on the exclusion of other even numbers based on quadratic residues modulo 8.
Murtuza Tipu
Messages
47
Reaction score
2

Homework Statement


Let m be the number of numbers fromantic the set {1,2,3,...,2014} which can be expressed as difference of squares of two non negative integers. The sum of the digits of m is ...

Homework Equations

The Attempt at a Solution


I got a solution from a magazine but I didn't under stand how it came
Can anyone explain me how it came.
Answer is as follows:
2n+1=(n+1)^2 -n^2
n^3=[n (n+1)/2]^2 - [n (n-1)/2]^2
Therefore m contains all odd numbers and the even numbers 2^3,4^3,8^3,10^3,12^3.
Therefore m=1007+7=1013 with digit sum 5.
 
Physics news on Phys.org
Containing all odd numbers is a consequence of the first statement, 2n+1=(n+1)^2 -n^2. This clearly shows that all odd numbers can be created as a difference of squares.
For even numbers, a different identity is used, n^3=[n (n+1)/2]^2 - [n (n-1)/2]^2. This is not necessarily even, but is definitely a difference of square integers.
So it can be concluded that any cubed integer is also in the set.
Looking at the bounds [1,2014], the largest even cube is 12^3 = 1728.
Odd numbers are 2n+1 for n = 0 to 1006, or 1007 in the set.
Even numbers are the cubes of 2, 4, 6, 8, 10, and 12, or 6 in the set.
This gives 1007+6 = 1013.

The truth of the identities used can be shown through simple expansion.

My question is how can one be sure that other even numbers should be excluded from the set?
 
Oops... think about RUber's question first :-)
##(n+1)^2-n^2=2n+1##
##(n+2)^2-n^2=4n+4=4(n+1)##
Therefore any odd number and any multiple of 4 can be expressed as the difference of two squares.

So m is wrong, and so is the digit sum.
 
Hint: What are the quadratic residues modulo 8?
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
7
Views
4K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 22 ·
Replies
22
Views
845
  • · Replies 4 ·
Replies
4
Views
2K
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K