Understanding the Uniform Distribution of P-Values in Hypothesis Testing

chowpy
Messages
4
Reaction score
0
I read the following statement from wiki,but I don't know how to get this.

"when a p-value is used as a test statistic for a simple null hypothesis, and the distribution of the test statistic is continuous, then the test statistic (p-value) is uniformly distributed between 0 and 1 if the null hypothesis is true."

anyone can explain it more?
thanks~~
 
Physics news on Phys.org
Hi chowpy, welcome to PF!

Imagine that you have a data set A of one or more experimental observations. You also have a null hypothesis in mind (a possible distribution of results that data set A may or may not have come from). Say you're comparing the means of these two distributions (but it could be any parameter that you're comparing).

The p-value is always defined as the expected frequency of obtaining your actual data set A from the null hypothesis. (If the p-value is incredibly low, we might decide that A came from another distribution, and therefore reject the null hypothesis; that's what hypothesis testing is all about.)

If the null hypothesis is actually true, then we'd expect to get a p-value anywhere from 0% to 100%, distributed evenly. In other words, if the data set A (or a more extreme* data set) would only arise 20% of the time, then we'd expect a p-value of 0.20. *By more extreme I mean a data set with a mean farther away from the mean of the null hypothesis, in the example we're using.

Does this answer your question?
 
Remember what it means for a random variable X to be uniformly distributed on (0,1)

P(X <=a) = a for any a in (0,1)
Let P denote the p-value as a random variable

T stand for a generic Test statistic that has a continuous distribution.

Pick an a in (0,1). Since T has a continuous distribution, there is a number ta that satisfies

<br /> \Pr(T \le ta) = a<br />

Now, the events P \le a and T \le ta are equivalent, so that

<br /> \Pr(P \le a) = \Pr(T \le ta) = a<br />

comparing this to the meaning of "uniformly distributed on (0,1) shows the result.
 
Thanks Mapes and statdad~
I understand it now~
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Replies
6
Views
2K
Replies
5
Views
2K
Replies
43
Views
4K
Replies
11
Views
2K
Replies
7
Views
2K
Replies
20
Views
2K
Replies
4
Views
1K
Back
Top