michael879 said:
Bill_K said:
A particle with nonzero (even infinitesimal) mass has proper time - a light ray does not. A particle with nonzero mass would see the same elapsed proper time between its creation and annihilation, no matter how fast it may be traveling. The prototype example is the ultrarelativistic muon that makes it through the atmosphere before decaying. From the "perspective of the muon", the decay takes exactly the same time it does at rest, namely 2 μsec.
Um, you're wrong about your second point.. a particle created at A, traveling near light speed to be destroyed at B, will see the distance between A and B shrink to 0 and as a result would not experience any time because it is created and destroyed almost simultaneously.
Um, you're wrong, michael, everything Bill_K said is exactly right and everything you said is exactly wrong. The Proper Time for the particle between events A and B does not depend on any frame or any convention or anything else. The Coordinate Time between events A and B can change depending on the frame but it will never get shorter than the Proper Time, only longer. Furthermore, the particle already sees the distance between A and B equal to zero, there's no shrinking involved. The Coordinate Distance between events A and B is zero in the particle's rest frame, it only gets bigger in other frames.
michael879 said:
And also, the differences between a massless particle and a massive particle shrinks to nothing as the mass of the particle shrinks to 0. So while you can't talk about light's reference frame, you can take the limit as a massive particle becomes massless traveling at c.
There's always a huge difference between a massless particle and a massive particle, no matter how small the massive particle gets, the spacetime interval between the events describing its creation and annihilation (assuming it's inertial as we have been in this case) will always remain timelike while the spacetime interval for a photon is always lightlike.
michael879 said:
I assume the OP is looking for an answer besides "it just can't be done", as 99% of the people asking this question are. So if you're going to take the time to answer them, why not provide a good answer?
He asked for the correct answer and that's what I gave him. And it was a good answer and so was Zz's and the OP thanked us for them.
michael879 said:
Notice I did specify that you couldn't transform to light speed, and I was talking about a limit in my post.
Talking about taking the limit is the wrong answer because it's just as wrong as thinking that you can transform to light speed.
I'm sure my statements haven't persuaded you so let me try another approach. Consider the two events A and B describing the creation and annihilation of a muon. Let's assume the muon survives for 2 microseconds. We'll use units of microseconds for time and light-microseconds for distance and we'll put them in the format of [t,x]. We'll assume the muon was created at [0,0] and was annihilated at [2,0] in its rest frame. Now we want to increase the distance for the annihilation of a hypothetical particle and see how the type of the spacetime interval changes.
First we'll note that as long as the t parameter is greater than the x parameter, the spacetime interval is lightlike. If it is smaller, then it's spacelike and if the t and x parameters are equal, it's lightlike. We'll also note that a timelike spacetime interval can be measured by an inertial clock that is present at both events A and B and a spacelike spacetime interval can be measured with an inertial ruler present simultaneously (as defined by SR) at both events. A lightlike spacetime interval cannot be measured by anything inertial.
So as we increase the x parameter from zero and approach 2, the spacetime interval can always be measured by a clock, no matter how close we get to 2. But when we get to 2, the spacetime interval abruptly changes from being timelike to becoming lightlike. We could also start with the x parameter equal to 4 and decrease it as we approach 2. In this case, the spacetime interval is spacelike and could be measured with a ruler as long as we never hit 2, but the instant we hit 2, it can no longer be measured with a ruler as it becomes lightlike.
Now the question is: should we call the lightlike spacetime interval "zero microseconds" (because we approached it from the timelike side using a clock to measure it) or "zero light-microseconds" (because we approached it from the spacelike side using a ruler to measure it)? As a matter of fact, it is called a null interval because it is inherently different that either a timelike spacetime interval or a spacelike spacetime interval. We can neither measure it with either a clock or a ruler, neither can we characterize as either timelike or spacelike.