cyberdeathreaper
- 46
- 0
Can someone help me understand the transition between these two steps?
<br /> <x> = \iint \Phi^* (p',t) \delta (p - p') \left( - \frac{\hbar}{i} \frac{\partial}{\partial p} \Phi (p,t) \right) dp' dp<br />
=
<br /> <x> = \int \Phi^* (p,t) \left( - \frac{\hbar}{i} \frac{\partial}{\partial p} \Phi (p,t) \right) dp<br />
Assume the integrals go from -infinity to +infinity, and assume the delta function is the Dirac delta function.
<br /> <x> = \iint \Phi^* (p',t) \delta (p - p') \left( - \frac{\hbar}{i} \frac{\partial}{\partial p} \Phi (p,t) \right) dp' dp<br />
=
<br /> <x> = \int \Phi^* (p,t) \left( - \frac{\hbar}{i} \frac{\partial}{\partial p} \Phi (p,t) \right) dp<br />
Assume the integrals go from -infinity to +infinity, and assume the delta function is the Dirac delta function.
Last edited: