Understanding Wave Direction in Michelson-Morley Interferometer

ith
Messages
12
Reaction score
0
Hello, I would like to understand the Michelson–Morley interferometer, but with the laser being an omnidirectional photon source and a pipe.

http://img822.imageshack.us/img822/6520/interferometer.png

There are two pipes, but only one transmits light. The other absorbs the light, because the wave direction is not parallel to the pipe.

One of the images shows the interferometer as seen by the stationary observer.

Now, what about the moving observer? I have a problem understanding the case. Is the wave direction bent for him, relatively to the stationary observer? If yes, how he interprets, that still the same pipe transmits light? If not, what about the direction of the output beam, which should be diagonal for the moving observer in order to hit the mirror?
 
Last edited by a moderator:
Physics news on Phys.org
It would be a lot easier to illustrate if you showed the trajectory of a single photon as it traced out two diagonal paths, the outbound one going up and to the right and the inbound one going up and to the left. Then it would be easy to see how this photon will be able to travel through the tube without hitting the walls. Once you see it that way, you can imagine successive photons traversing their own diagonal paths each one above the previous one. Then, if you want, you can draw other illustrations to show how other photons emitted in different directions don't make it through the tube.
 
Perhaps I kow already. The direction should be diagonal, because the pipe moves.
 
I purposedly wanted to draw the wave, and not photons.

Let the source moves relatively to some observer.
Photons in other images are shown as little balls, that follow their source. So they move diagonally, relatively to the observer. Why waves would do so? Is the bottom image correct for the observer? Would the wave front lag behind the source or move with it just as these "photon balls"?

What if the circles were not wave fronts, but instead bursts of photons. Would not they lag behind? Would they behave differently that wave fronts?
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top