Unfixed Mass and Wedge - am I correct?

In summary, this problem involves finding the accelerations of two masses, m1 and m2, on an incline with an angle theta. The normal forces between the masses and the incline and between the incline and the ground are unknown. The solution involves finding the acceleration of m2 relative to the ground and using it to find the acceleration of m1 relative to the ground. The final solution is a messy expression involving the given variables and the magnitude of the acceleration of m1, which is found using a series of equations and trigonometric identities.
  • #1
Ataman
18
0

Homework Statement



A mass m1 sits on an incline with mass m2 and angle [tex]\theta[/tex]. Find the accelerations of m1 and m2 relative to the ground after they are released.

This is a long and tricky problem (since we do not know the normal forces, and we have to solve for a combinations of accelerations). Therefore I would like people to check if this is correct.

Homework Equations



[tex]\vec{F_{net}} = m \vec{a}[/tex]
[tex]\vec{a}_{_{2G}}+\vec{a}_{_{12}}=\vec{a}_{_{1G}}[/tex]

In other words, acceleration of m1 relative to the ground equals acceleration of m2 relative to the ground plus acceleration of m1 relative to m2.

The Attempt at a Solution



Let +i point right (the opposite direction the acceleration of the wedge), and +j point down for all systems.

Let [tex]\vec{F}_{_{N1}}[/tex] be the normal force between the block and the wedge (unknown), and let [tex]\vec{F}_{_{N2}}[/tex] be the normal force between the wedge and the ground (also unknown).

We do not know the magnitude of the acceleration of the block relative to the wedge, but we know it is along the incline, so

[tex]a_{_{12X}}\hat{i}=\left|\vec{a}_{_{12}}\right|cos\theta[/tex]
[tex]a_{_{12Y}}\hat{j}=\left|\vec{a}_{_{12}}\right|sin\theta[/tex]

[tex]\vec{F_{net}} = m_{_{1}} \vec{a}_{_{1G}}[/tex] system: m1
[tex]\vec{F_{_{G}}}+\vec{F_{_{N1}}} = m_{_{1}} \vec{a}_{_{1G}}[/tex]

[tex]\hat{i}:F_{_{N1X}}=m_{_{1}}a_{_{1GX}}[/tex]
[tex]\hat{i}:F_{_{N1}}sin\theta=m_{_{1}}a_{_{1GX}}[/tex]
[tex]\hat{i}:F_{_{N1}}=\frac{m_{_{1}}a_{_{1GX}}}{sin\theta}[/tex]

[tex]\hat{j}:F_{_{G}}-F_{_{N1Y}}=m_{_{1}}a_{_{1GY}}[/tex]
[tex]\hat{j}:F_{_{G}}-F_{_{N1Y}}=m_{_{1}}a_{_{1GY}}[/tex]
[tex]\hat{j}:m_{_{1}}g-F_{_{N1}}cos\theta=m_{_{1}}a_{_{1GY}}[/tex]
[tex]\hat{j}:m_{_{1}}g-\left(\frac{m_{_{1}}a_{_{1GX}}}{sin\theta}\right)cos\theta=m_{_{1}}a_{_{1GY}}[/tex]
[tex]\hat{j}:g-a_{_{1GX}}cot\theta=a_{_{1GY}}[/tex]

[tex]\vec{F_{net}} = m_{_{2}} \vec{a}_{_{2G}}[/tex] system: m2
[tex]\vec{F_{_{G}}}+\vec{F_{_{N1}}}+\vec{F_{_{N2}}} = m_{_{2}} \vec{a}_{_{2G}}[/tex]

[tex]\hat{i}:0-F_{_{N1X}}+0=-m_{_{2}}a_{_{2GX}}[/tex]
[tex]\hat{i}:F_{_{N1}}sin\theta=m_{_{2}}a_{_{2G}}[/tex]
[tex]\hat{i}:\left(\frac{m_{_{1}}a_{_{1GX}}}{sin\theta}\right)sin\theta=m_{_{2}}a_{_{2G}}[/tex]
[tex]\hat{i}:m_{_{1}}a_{_{1GX}}=m_{_{2}}a_{_{2G}}[/tex]
[tex]\hat{i}:m_{_{1}}\left(a_{_{2GX}}+a_{_{12X}}\right)=m_{_{2}}a_{_{2G}}[/tex]
[tex]\hat{i}:m_{_{1}}\left(a_{_{2G}}+a_{_{12}}cos\theta\right)=m_{_{2}}a_{_{2G}}[/tex]
[tex]\hat{i}:m_{_{1}}a_{_{12}}cos\theta=\left(m_{_{2}}-m_{_{1}}\right)a_{_{2G}}[/tex]
[tex]\hat{i}:\frac{m_{_{1}}a_{_{12}}cos\theta}{\left(m_{_{2}}-m_{_{1}}\right)}=a_{_{2G}}[/tex]

[tex]\hat{j}:F_{_{G}}+F_{_{N1Y}}-F_{_{N2Y}}=m_{_{2}}a_{_{2GY}}[/tex]
[tex]\hat{j}:m_{_{2}}g+F_{_{N1}}cos\theta-F_{_{N2}}=0[/tex]
[tex]\hat{j}:m_{_{2}}g+F_{_{N1}}cos\theta=F_{_{N2}}[/tex]

Now combining the unknowns to solve for the accelerations:

We know that
[tex]\hat{i}:a_{_{2GX}}+a_{_{12X}}=a_{_{1GX}}[/tex]
[tex]\hat{i}:a_{_{2G}}+a_{_{12X}}=a_{_{1GX}}[/tex]
[tex]\hat{i}:a_{_{2G}}+a_{_{12}}cos\theta=a_{_{1GX}}[/tex]
and
[tex]\hat{j}:a_{_{2GY}}+a_{_{12Y}}=a_{_{1GY}}[/tex]
[tex]\hat{j}:a_{_{12Y}}=a_{_{1GY}}[/tex]
[tex]\hat{j}:a_{_{12}}sin\theta=a_{_{1GY}}[/tex]

From the j component of the system m1, we know that
[tex]\hat{j}:g-a_{_{1GX}}cot\theta=a_{_{1GY}}[/tex]
and we also know from above that:
[tex]\hat{j}:a_{_{1GY}}=a_{_{12Y}}[/tex]
and
[tex]\hat{i}:a_{_{2G}}+a_{_{12}}cos\theta=a_{_{1GX}}[/tex]

Therefore,
[tex]\hat{j}:g-a_{_{1GX}}cot\theta=a_{_{12Y}}[/tex]
[tex]\hat{j}:g-\left(a_{_{2G}}+a_{_{12}}cos\theta\right)cot\theta=a_{_{12}}sin\theta[/tex]

We derived for system m2 what [tex]a_{_{2G}}[/tex] was, so we can solve for [tex]a_{_{12}}[/tex]
[tex]g-\left(\frac{m_{_{1}}a_{_{12}}cos\theta}{\left(m_{_{2}}-m_{_{1}}\right)}+a_{_{12}}cos\theta\right)cot\theta=a_{_{12}}sin\theta[/tex]
[tex]g-a_{_{12}}cos\theta\left(\frac{m_{_{1}}}{m_{_{2}}-m_{_{1}}}+1\right)cot\theta=a_{_{12}}sin\theta[/tex]
[tex]g=a_{_{12}}cos\theta\left(\frac{m_{_{1}}}{m_{_{2}}-m_{_{1}}}+1\right)cot\theta+a_{_{12}}sin\theta[/tex]
[tex]g=a_{_{12}}\left(cos\theta\left(\frac{m_{_{1}}}{m_{_{2}}-m_{_{1}}}+1\right)cot\theta+sin\theta\right)[/tex]

[tex]\frac{g}{cos\theta\left(\frac{m_{_{1}}}{m_{_{2}}-m_{_{1}}}+1\right)cot\theta+sin\theta}=a_{_{12}}[/tex]

We finally have the magnitude of [tex]a_{_{12}}[/tex], but we know the direction, since the acceleration of the mass relative to the incline is down the incline itself.

[tex]\vec{a}_{_{12}}=a_{_{12X}}\hat{i}+a_{_{12Y}}\hat{j}[/tex]
[tex]\vec{a}_{_{12}}=a_{_{12}}cos\theta\hat{i}+a_{_{12}}sin\theta\hat{j}[/tex]
[tex]\vec{a}_{_{12}}=a_{_{12}}(cos\theta\hat{i}+sin\theta\hat{j})[/tex]
[tex]\vec{a}_{_{12}}=\left(\frac{g}{cos\theta\left(\frac{m_{_{1}}}{m_{_{2}}-m_{_{1}}}+1\right)cot\theta+sin\theta}\right)(cos\theta\hat{i}+sin\theta\hat{j})[/tex]

Now we find the acceleration of the block relative to the earth.

We were able to find an expression for the acceleration of the block relative to the ground in terms of the given variables and, most importantly, the magnitude of the acceleration of the block, which we just solved.

From the i-component of system m2:
[tex]\frac{m_{_{1}}a_{_{12}}cos\theta}{\left(m_{_{2}}-m_{_{1}}\right)}=a_{_{2G}}[/tex]
we go to here...
[tex]\left(\frac{g}{cos\theta\left(\frac{m_{_{1}}}{m_{_{2}}-m_{_{1}}}+1\right)cot\theta+sin\theta}\right)\left(\frac{m_{_{1}}cos\theta}{\left(m_{_{2}}-m_{_{1}}\right)}\right)=a_{_{2G}}[/tex]
The wedge only has a horizontal component of the acceleration, so plugging in [tex]a_{_{12}}[/tex] gives...
[tex]\vec{a}_{_{2G}}=-\left(\frac{g}{cos\theta\left(\frac{m_{_{1}}}{m_{_{2}}-m_{_{1}}}+1\right)cot\theta+sin\theta}\right)\left(\frac{m_{_{1}}cos\theta}{\left(m_{_{2}}-m_{_{1}}\right)}\right)\hat{i}[/tex]

Note the minus sign; the block accelerates to the left, while our +i is to the right.

All that is left is finding the acceleration of 1 relative to the ground.

Recalling

[tex]\vec{a}_{_{1G}} = \vec{a}_{_{2G}} + \vec{a}_{_{12}}[/tex]
[tex]\vec{a}_{_{1G}} = -a_{_{2G}}\hat{i} + a_{_{12X}}\hat{i}+a_{_{12Y}}\hat{j}[/tex]
[tex]\vec{a}_{_{1G}} = -a_{_{2G}}\hat{i} + a_{_{12}}cos\theta\hat{i}+a_{_{12}}sin\theta\hat{j}[/tex]
[tex]\vec{a}_{_{1G}} = -a_{_{2G}}\hat{i} + a_{_{12}}(cos\theta\hat{i}+sin\theta\hat{j})[/tex]

We can finish this problem by plugging in values for [tex]a_{_{12}}[/tex] and [tex]a_{_{2G}}[/tex]

Therefore,
[tex]\vec{a}_{_{1G}} = - \left(\frac{g}{cos\theta\left(\frac{m_{_{1}}}{m_{_{2}}-m_{_{1}}}+1\right)cot\theta+sin\theta}\right)\left(\frac{m_{_{1}}cos\theta}{\left(m_{_{2}}-m_{_{1}}\right)}\right)\hat{i} + \left(\frac{g}{cos\theta\left(\frac{m_{_{1}}}{m_{_{2}}-m_{_{1}}}+1\right)cot\theta+sin\theta}\right)(cos\theta\hat{i}+sin\theta\hat{j})[/tex]

Cleaning it up we end with a still messy solution:
[tex]\vec{a}_{_{1G}} = \left(\frac{g}{cos\theta\left(\frac{m_{_{1}}}{m_{_{2}}-m_{_{1}}}+1\right)cot\theta+sin\theta}\right)\left(cos\theta\left(\frac{m_{_{1}}}{m_{_{2}}-m_{_{1}}}\right)\hat{i}+sin\theta\hat{j}\right)[/tex]

-Ataman
 
Physics news on Phys.org
  • #2
Ataman said:
The wedge only has a horizontal component of the acceleration, so plugging in [tex]a_{_{12}}[/tex] gives...
[tex]\vec{a}_{_{2G}}=-\left(\frac{g}{cos\theta\left(\frac{m_{_{1}}}{m_{_{2}}-m_{_{1}}}+1\right)cot\theta+sin\theta}\right)\left(\frac{m_{_{1}}cos\theta}{\left(m_{_{2}}-m_{_{1}}\right)}\right)\hat{i}[/tex]

Note the minus sign; the block accelerates to the left, while our +i is to the right.

This actually simplifies to:

[tex]
- \frac{{m_1 g\cos \theta \sin \theta }}{{m_2 - m_1 \sin ^2 \theta }}.
[/tex]

Notice that the denominator can become zero for certain possible values, which shows that something is wrong.

The correct answer is:

[tex]
- \frac{{m_1 g\cos \theta \sin \theta }}{{m_2 + m_1 \sin ^2 \theta }}.
[/tex]


If the [itex]\left(\frac{m_{_{1}}}{m_{_{2}}-m_{_{1}}}+1\right)[/itex] was replaced by [itex]
\left (1 - \frac{{m_1 }}{{m_1 + m_2 }}\right)
[/itex], then you would get the correct answer. Naturally, the other acceleration values will also change. Check for mistakes. Apart from this, a very good effort indeed.
 
Last edited:
  • #3
Many thanks for pointing those out, Shooting Star. All of my mistakes came from several minus signs I forgot to put in for the acceleration of 2 relative to the ground [tex](a_{_{2GX}})[/tex].

Ataman said:
[tex]\hat{i}:m_{_{1}}\left(a_{_{2GX}}+a_{_{12X}}\right)=m_{_{2}}a_{_{2G}}[/tex]
[tex]\hat{i}:m_{_{1}}\left(a_{_{2G}}+a_{_{12}}cos\theta\right)=m_{_{2}}a_{_{2G}}[/tex]
...
We know that
[tex]\hat{i}:a_{_{2GX}}+a_{_{12X}}=a_{_{1GX}}[/tex]
[tex]\hat{i}:a_{_{2G}}+a_{_{12X}}=a_{_{1GX}}[/tex]
[tex]\hat{i}:a_{_{2G}}+a_{_{12}}cos\theta=a_{_{1GX}}[/tex]
and
[tex]\hat{j}:a_{_{2GY}}+a_{_{12Y}}=a_{_{1GY}}[/tex]
...
[tex]\hat{i}:a_{_{2G}}+a_{_{12}}cos\theta=a_{_{1GX}}[/tex]
...

Here is a more correct version, for those who care. :)

Homework Statement



A mass m1 sits on an incline with mass m2 and angle [tex]\theta[/tex]. Find the accelerations of m1 and m2 relative to the ground after they are released.

This is a long and tricky problem (since we do not know the normal forces, and we have to solve for a combinations of accelerations). Therefore I would like people to check if this is correct.

Homework Equations



[tex]\vec{F_{net}} = m \vec{a}[/tex]
[tex]\vec{a}_{_{2G}}+\vec{a}_{_{12}}=\vec{a}_{_{1G}}[/tex]

In other words, acceleration of m1 relative to the ground equals acceleration of m2 relative to the ground plus acceleration of m1 relative to m2.

The Attempt at a Solution



Let +i point right (the opposite direction the acceleration of the wedge), and +j point down for all systems.

Let [tex]\vec{F}_{_{N1}}[/tex] be the normal force between the block and the wedge (unknown), and let [tex]\vec{F}_{_{N2}}[/tex] be the normal force between the wedge and the ground (also unknown).

We do not know the magnitude of the acceleration of the block relative to the wedge, but we know it is along the incline, so

[tex]a_{_{12X}}\hat{i}=\left|\vec{a}_{_{12}}\right|\cos\theta[/tex]
[tex]a_{_{12Y}}\hat{j}=\left|\vec{a}_{_{12}}\right|\sin\theta[/tex]

[tex]\vec{F_{net}} = m_{_{1}} \vec{a}_{_{1G}}[/tex] system: m1
[tex]\vec{F_{_{G}}}+\vec{F_{_{N1}}} = m_{_{1}} \vec{a}_{_{1G}}[/tex]

[tex]\hat{i}:F_{_{N1X}}=m_{_{1}}a_{_{1GX}}[/tex]
[tex]\hat{i}:F_{_{N1}}\sin\theta=m_{_{1}}a_{_{1GX}}[/tex]
[tex]\hat{i}:F_{_{N1}}=\frac{m_{_{1}}a_{_{1GX}}}{\sin\theta}[/tex]

[tex]\hat{j}:F_{_{G}}-F_{_{N1Y}}=m_{_{1}}a_{_{1GY}}[/tex]
[tex]\hat{j}:F_{_{G}}-F_{_{N1Y}}=m_{_{1}}a_{_{1GY}}[/tex]
[tex]\hat{j}:m_{_{1}}g-F_{_{N1}}\cos\theta=m_{_{1}}a_{_{1GY}}[/tex]
[tex]\hat{j}:m_{_{1}}g-\left(\frac{m_{_{1}}a_{_{1GX}}}{\sin\theta}\right)\cos\theta=m_{_{1}}a_{_{1GY}}[/tex]
[tex]\hat{j}:g-a_{_{1GX}}\cot\theta=a_{_{1GY}}[/tex]

[tex]\vec{F_{net}} = m_{_{2}} \vec{a}_{_{2G}}[/tex] system: m2
[tex]\vec{F_{_{G}}}+\vec{F_{_{N1}}}+\vec{F_{_{N2}}} = m_{_{2}} \vec{a}_{_{2G}}[/tex]

[tex]\hat{i}:0-F_{_{N1X}}+0=-m_{_{2}}a_{_{2GX}}[/tex]
[tex]\hat{i}:F_{_{N1}}\sin\theta=m_{_{2}}a_{_{2G}}[/tex]
[tex]\hat{i}:\left(\frac{m_{_{1}}a_{_{1GX}}}{\sin\theta}\right)\sin\theta=m_{_{2}}a_{_{2G}}[/tex]
[tex]\hat{i}:m_{_{1}}a_{_{1GX}}=m_{_{2}}a_{_{2G}}[/tex]
[tex]\hat{i}:m_{_{1}}\left(-a_{_{2GX}}+a_{_{12X}}\right)=m_{_{2}}a_{_{2G}}[/tex]
[tex]\hat{i}:m_{_{1}}\left(-a_{_{2G}}+a_{_{12}}\cos\theta\right)=m_{_{2}}a_{_{2G}}[/tex]
[tex]\hat{i}:m_{_{1}}a_{_{12}}\cos\theta=\left(m_{_{2}}+m_{_{1}}\right)a_{_{2G}}[/tex]
[tex]\hat{i}:\frac{m_{_{1}}a_{_{12}}\cos\theta}{\left(m_{_{2}}+m_{_{1}}\right)}=a_{_{2G}}[/tex]

[tex]\hat{j}:F_{_{G}}+F_{_{N1Y}}-F_{_{N2Y}}=m_{_{2}}a_{_{2GY}}[/tex]
[tex]\hat{j}:m_{_{2}}g+F_{_{N1}}\cos\theta-F_{_{N2}}=0[/tex]
[tex]\hat{j}:m_{_{2}}g+F_{_{N1}}\cos\theta=F_{_{N2}}[/tex]

Now combining the unknowns to solve for the accelerations:

We know that
[tex]\hat{i}:-a_{_{2GX}}+a_{_{12X}}=a_{_{1GX}}[/tex]
[tex]\hat{i}:-a_{_{2G}}+a_{_{12X}}=a_{_{1GX}}[/tex]
[tex]\hat{i}:-a_{_{2G}}+a_{_{12}}\cos\theta=a_{_{1GX}}[/tex]
and
[tex]\hat{j}:-a_{_{2GY}}+a_{_{12Y}}=a_{_{1GY}}[/tex]
[tex]\hat{j}:a_{_{12Y}}=a_{_{1GY}}[/tex]
[tex]\hat{j}:a_{_{12}}\sin\theta=a_{_{1GY}}[/tex]

From the j component of the system m1, we know that
[tex]\hat{j}:g-a_{_{1GX}}\cot\theta=a_{_{1GY}}[/tex]
and we also know from above that:
[tex]\hat{j}:a_{_{1GY}}=a_{_{12Y}}[/tex]
and
[tex]\hat{i}:a_{-_{2G}}+a_{_{12}}\cos\theta=a_{_{1GX}}[/tex]

Therefore,
[tex]\hat{j}:g-a_{_{1GX}}\cot\theta=a_{_{12Y}}[/tex]
[tex]\hat{j}:g-\left(-a_{_{2G}}+a_{_{12}}\cos\theta\right)\cot\theta=a_{_{12}}\sin\theta[/tex]

We derived for system m2 what [tex]a_{_{2G}}[/tex] was, so we can solve for [tex]a_{_{12}}[/tex]
[tex]g-\left(-\frac{m_{_{1}}a_{_{12}}\cos\theta}{\left(m_{_{2}}+m_{_{1}}\right)}+a_{_{12}}\cos\theta\right)\cot\theta=a_{_{12}}\sin\theta[/tex]
[tex]g-a_{_{12}}\cos\theta\left(1-\frac{m_{_{1}}}{m_{_{2}}+m_{_{1}}}\right)\cot\theta=a_{_{12}}\sin\theta[/tex]
[tex]g=a_{_{12}}\cos\theta\left(1-\frac{m_{_{1}}}{m_{_{2}}+m_{_{1}}}\right)\cot\theta+a_{_{12}}\sin\theta[/tex]
[tex]g=a_{_{12}}\left(\cos\theta\left(1-\frac{m_{_{1}}}{m_{_{2}}+m_{_{1}}}\right)\cot\theta+\sin\theta\right)[/tex]
[tex]\left(\frac{g}{\cos\theta\left(1-\frac{m_{_{1}}}{m_{_{2}}+m_{_{1}}}\right)\cot\theta+sin\theta}\right)=a_{_{12}}[/tex]
[tex]\left(\frac{g\sin\theta}{\cos^2\theta\left(1-\frac{m_{_{1}}}{m_{_{2}}+m_{_{1}}}\right)+\sin^2\theta}\right)=a_{_{12}}[/tex]

We finally have the magnitude of [tex]a_{_{12}}[/tex], but we know the direction, since the acceleration of the mass relative to the incline is down the incline itself.

[tex]\vec{a}_{_{12}}=a_{_{12X}}\hat{i}+a_{_{12Y}}\hat{j}[/tex]
[tex]\vec{a}_{_{12}}=a_{_{12}}\cos\theta\hat{i}+a_{_{12}}\sin\theta\hat{j}[/tex]
[tex]\vec{a}_{_{12}}=a_{_{12}}(\cos\theta\hat{i}+\sin\theta\hat{j}\right)[/tex]
[tex]\vec{a}_{_{12}}=\left(\frac{g\sin\theta}{\cos^2\theta\left(1-\frac{m_{_{1}}}{m_{_{2}}+m_{_{1}}}\right)+\sin^2\theta}\right)\left(\cos\theta\hat{i}+\sin\theta\hat{j}\right)[/tex]

Now we find the acceleration of the block relative to the earth.

We were able to find an expression for the acceleration of the block relative to the wedge in terms of the given variables and, most importantly, the magnitude of the acceleration of the block, which we just solved. Now we have to solve for the magnitude of the acceleration of the wedge, [tex]a_{_{2G}}[/tex].

When we broke down the forces in the i-component of system m2, we came up with an expression that relates the magnitude of the acceleration of the block relative to the wedge and the magnitude of the acceleration of the wedge relative to the ground. We go from here...

[tex]\frac{m_{_{1}}a_{_{12}}\cos\theta}{\left(m_{_{2}}+m_{_{1}}\right)}=a_{_{2G}}[/tex]

to here by substituting [tex]a_{_{12}}[/tex]...

[tex]\left(\frac{g\sin\theta}{\cos^2\theta\left(1-\frac{m_{_{1}}}{m_{_{2}}+m_{_{1}}}\right)+\sin^2\theta}\right)\left(\frac{m_{_{1}}\cos\theta}{\left(m_{_{2}}-m_{_{1}}\right)}\right)=a_{_{2G}}[/tex]

The wedge only has a horizontal component of the acceleration, and is negatively directed (as our +i is to the right)...

[tex]\vec{a}_{_{2G}}=-\left(\frac{g\sin\theta}{\cos^2\theta\left(1-\frac{m_{_{1}}}{m_{_{2}}+m_{_{1}}}\right)+\sin^2\theta}\right)\left(\frac{m_{_{1}}\cos\theta}{\left(m_{_{2}}+m_{_{1}}\right)}\right)\hat{i}[/tex]

This could be simplified to:

[tex]\vec{a}_{_{2G}}=-\left(\frac{{m_1g\cos\theta\sin\theta}}{{m_2+m_1\sin^2\theta}}\right)\hat{i}[/tex]

Note the minus sign; the block accelerates to the left, while our +i is to the right.

All that is left is finding the acceleration of 1 relative to the ground.

Recalling

[tex]\vec{a}_{_{1G}} = \vec{a}_{_{2G}} + \vec{a}_{_{12}}[/tex]
[tex]\vec{a}_{_{1G}} = -a_{_{2G}}\hat{i} + a_{_{12X}}\hat{i}+a_{_{12Y}}\hat{j}[/tex]
[tex]\vec{a}_{_{1G}} = a_{_{12}}\cos\theta\hat{i}+a_{_{12}}\sin\theta\hat{j} -a_{_{2G}}\hat{i}[/tex]
[tex]\vec{a}_{_{1G}} = a_{_{12}}(\cos\theta\hat{i}+sin\theta\hat{j})-a_{_{2G}}\hat{i}[/tex]

We can finish this problem by plugging in values for [tex]a_{_{12}}[/tex] and [tex]a_{_{2G}}[/tex]

Therefore,
[tex]\vec{a}_{_{1G}}=\left(\frac{g\sin\theta}{\cos^2\theta\left(1-\frac{m_{_{1}}}{m_{_{2}}+m_{_{1}}}\right)+\sin^2\theta}\right)\left(\cos\theta\hat{i}+\sin\theta\hat{j}\right)-\left(\frac{{m_1g\cos\theta\sin\theta}}{{m_2+m_1\sin^2\theta}}\right)\hat{i}[/tex]

-Ataman
 
  • #4
The problem is much more simple than you have indicated, with all due respect. My clue: consider the role of momentum and energy conservation.
Regards,
Reilly Atkinson
 
  • #5
Need for an shorter solution

Hi Ataman,

You must have understood, in spite of your very correct proof, that a simpler solution is called for. Reilly Atkinson has given you the correct idea. Why don't you give it a try? We are all here to help you if you get stuck.
 

FAQ: Unfixed Mass and Wedge - am I correct?

1. What is "unfixed mass" in the context of physics?

"Unfixed mass" refers to an object that is not attached or fixed to another object. It is a term commonly used in physics to describe a mass that is free to move and is not restricted by any external forces.

2. How does the concept of "unfixed mass" apply to a wedge?

In the context of a wedge, "unfixed mass" refers to the mass of the wedge itself. This mass is not attached to any other object and can move freely, impacting the motion of other objects that come into contact with the wedge.

3. What is the purpose of studying "unfixed mass" and wedge interactions?

Studying the interactions between "unfixed mass" and wedges can help us understand the fundamental principles of motion and forces in physics. It can also have practical applications in fields such as engineering and mechanics.

4. How does the angle of the wedge affect the motion of "unfixed mass"?

The angle of the wedge can significantly impact the motion of "unfixed mass." As the angle increases, the force required to move the mass also increases, and the motion of the mass changes direction.

5. Can you provide an example of the concept of "unfixed mass" and wedge in everyday life?

One example of "unfixed mass" and wedge in everyday life is a doorstop. The wedge, in this case, is the doorstop, and the "unfixed mass" is the door itself. When the doorstop is placed at an angle, it prevents the door from moving freely, demonstrating the principles of motion and forces.

Back
Top