(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

f(x)= {1, ‐1/2<x≤1/2}

{0, ‐1<x≤ ‐1/2 or 1/2<x≤1}

State whether or not the function's Fourier sine and cosine series(for the corresponding half interval) converges uniformly on the entire real line ‐∞<x<∞

2. Relevant equations

3. The attempt at a solution

Basically, my solution to this problem is that the function's Fourier sine series will converge to the odd extension on 1≤x≤1 where it is continuous and the average of the limits where the odd extension has a jump discontinuity. Since we only have to consider the half interval, 0≤x≤1, and the odd extension is the same as f(x) for this interval; the Fourier sine series will converge in the same manner as the regular Fourier series (which converges pointwise, but not uniformly).

You can make a similar argument for the Fourier cosine series.

Does this appear to be correct? Also, does the condition about it being true for the entire real line ‐∞<x<∞ make a difference for the answer?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Uniform Convergence of Fourier sine and cosine series

**Physics Forums | Science Articles, Homework Help, Discussion**