I am not sure whether I understand correctly. Especially the meaning of
Garrulo said:
distribution probability function for variables ... and first derivatives from these variables ...
is not clear to me.
If you have a system which local gauge invariance AND if you have a single physical state ##|\psi\rangle## then the state (or wave function) is unique modulo gauge transformations. That means that instead of a single state ##|\psi\rangle## you have to consider an equivalence class ##[|\psi\rangle]## of states w.r.t. to gauge transformations U
|\psi\rangle \sim |\psi^\prime\rangle \Leftrightarrow \exists U \in \mathcal{G}:\;|\psi^\prime\rangle = U |\psi\rangle
Fixing a gauge means to select one unique representative state from each equivalence class.
So if you start with a unique equivalence class for a physical problem (i.e. an equivalence class of one-dimensional eigenspaces for a not yet gauge-fixed Hamiltonian ##H[A]## with gauge field) then gauge fixing by definition results in a unique eigenstate (up to global transformations ##\exp(i\alpha)##). In that case you don't need any additional conditions.
If you don't have a unique equivalence class then gauge fixing does not provide a unique solution.
Example: if you start with the equivalence class ##[|1s\rangle] = [|100\rangle]## of the Hydrogen atom, then this is still subject to gauge transformations; if you now fix the gauge as usual (resulting in the well-known Hamiltonian with ##\vec{A} = 0##) then this guarantuees a unique state ##|100\rangle## and a unique wave function.
Example2: if you start with the equivalence class of the 4-dim. eigenspace ##[|n=2; l,m\,\text{not fixed}\rangle]##, then gauge fixing still leaves you with a 4-dim. energy eigenspace.
So gauge fixing does not affect the dimension of the subspace "within the equivalence class". You have to reduce this dimension to dim = 1 by some other, physical considerations. What you need is a maximum set of commuting observables, like ##{H,L^2,L_z}## in the case of the Hydrogen atom.
So my summary would be that starting with a Hilbert space ##\mathcal{H}## and a gauge group ##\mathcal{G}## acting on the Hilbert space, the following is required to specify a state (as a one-dim. eigenspace) uniquely:
1) a maximum set of mutually commuting observables ##\{H, \ldots\}##
2) gauge fixing
The probability distribution ##|\psi|^2## does not help b/c you are still free to change the wave function by a local phase. This phase can either be the result of a physical effect or the result of a gauge transformation.
Hope this helps.