neelakash
- 491
- 1
The following question seems to be simple enough...Anyway, I hope if someone could confirm what I am thinking.
Is canonical transformation in mechanics unique? We know that given \ (q, p)\rightarrow\ (Q, P), \ [q,p] = [Q,P] = constant and Hamilton's equations of motion stay the same in the new co-ordinates.
My question is: given \ q\rightarrow Q in a canonical transoformation, is the map \ p\rightarrow P uniquely determined? Seems yes to me, but I do not find an off-hand argument in favour.
Can anyone tell how to derive this map?
-Regards,
Neel
Is canonical transformation in mechanics unique? We know that given \ (q, p)\rightarrow\ (Q, P), \ [q,p] = [Q,P] = constant and Hamilton's equations of motion stay the same in the new co-ordinates.
My question is: given \ q\rightarrow Q in a canonical transoformation, is the map \ p\rightarrow P uniquely determined? Seems yes to me, but I do not find an off-hand argument in favour.
Can anyone tell how to derive this map?
-Regards,
Neel