MHB UP.2.33 The jumping flea problem

  • Thread starter Thread starter karush
  • Start date Start date
AI Thread Summary
To determine the initial speed of a flea that jumps to a height of 0.440m, the equation used is v_0 = √(2gh), resulting in an initial speed of approximately 2.94 m/s. The time the flea spends in the air can be calculated using the formula T = 2v_0/g, yielding about 0.599 seconds. The discussions also highlight the use of kinematic equations and energy conservation principles to derive these results. Participants emphasize the importance of understanding the physics concepts rather than relying solely on video explanations. The calculations confirm the flea's jump dynamics based on gravitational acceleration.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
a. If a flea can jumps straight up to a height of 0.440m.
what is the initial speed as it leaves the ground.
b. For how much time is it in the air?

ok I am sure we use this equation

$$x=x_0+v_o^t+\frac{1}{2} at^2$$

I watched another YT on this but it got to much complication
better just to come here
 
Mathematics news on Phys.org
Apart from YouTube, do you also have a textbook? What does that say?
(I am asking because I am rarely able to understand something from a video that I did not understand previously already.)

I think you mean $v_0t$ in the equation for $x$?

In a drawing, let the vertical axis be the $x$ axis, with upward = positive. The initial $x$-position $x_0 = 0$.
What do you choose for the acceleration $a$? What is the sign of $a$?

Now note that at the maximal $x$-position the velocity equals zero.
How do you obtain an expression for the velocity from the expression you have given?
 
I got that from the YT vid

the text is University Physics
but equation the is also form 2-12 on their eq list

I not in a class just doing this on my own.
 
Last edited:
(a) $v_f^2 = v_0^2 -2g \Delta y$

At the top of its trajectory, the flea’s velocity is zero and $\Delta y = h_{max}$ ...

$v_0 = \sqrt{2g h_{max}}$

(b) calculate the time it takes for the flea to reach the top of its trajectory, $h_{max}$, and double it ...

$v_f = v_0 - gt \implies t = \dfrac{v_0}{g}$

total time, $T=\dfrac{2v_0}{g} = \dfrac{2\sqrt{2gh_{max}}}{g}$
 
skeeter said:
(a) $v_f^2 = v_0^2 -2g \Delta y$

At the top of its trajectory, the flea’s velocity is zero and $\Delta y = h_{max}$ ...

$v_0 = \sqrt{2g h_{max}}$

(b) calculate the time it takes for the flea to reach the top of its trajectory, $h_{max}$, and double it ...

$v_f = v_0 - gt \implies t = \dfrac{v_0}{g}$

total time, $T=\dfrac{2v_0}{g} = \dfrac{2\sqrt{2gh_{max}}}{g}$

ok the textbook answers to this is

a. 2.94 m/s
b. 0.599 s

I'll see if i can plug into get em
$\displaystyle 0.599s=\frac{2\sqrt{2gh_{max}}}{g} $
if $g=-9.8$ and $h_{max}=.44$
 
Last edited:
karush said:
a. If a flea can jumps straight up to a height of 0.440m.
what is the initial speed as it leaves the ground.
b. For how much time is it in the air?

ok I am sure we use this equation

$$x=x_0+v_ot+\frac{1}{2} at^2$$

I watched another YT on this but it got to much complication
better just to come here
Well, since the "up to a height of 0.44m" is the height above the starting height, you can take $x_0= 0$. Then $x= v_0t+ \frac{1/2}at^2= \frac{1}{2}a(t^2+ \frac{2v_0}{a}t)$ is a quadratic and we can "complete the square": $x= \frac{a}{2}\left(t^2+ \frac{2v_0}{a}t+ \frac{v_0^2}{a^2}- \frac{v_0^2}{a^2}\right)= \frac{a}{2}\left(x+ \frac{v_0}{a}\right)^2- \frac{v_0^2}{2a^2}$. "a" here is negative so that this is an "upside down" parabola. When $t= -\frac{v_0}{a}$ it takes its maximum value $-\frac{v_0^2}{2a}$.

For (a), assuming this is on the surface of the earth, set a= -9.81 and solve $\frac{v_0^2}{19.62}= 0.440$ for $v_0$.

For (b), since a parabola is symmetric about its midline, take t equal to twice the "t" above, $-\frac{2v_0}{a}$.
 
Last edited by a moderator:
HallsofIvy said:
Well, since the "up to a height of 0.44m" is the height above the starting height, you can take $x_0= 0$. Then $x= v_0t+ \frac{1/2}at^2= \frac{1}{2}a(t^2+ \frac{2v_0}{a}t)$ is a quadratic and we can "complete the square": $x= \frac{a}{2}\left(t^2+ \frac{2v_0}{a}t+ \frac{v_0^2}{a^2}- \frac{v_0^2}{a^2}\right)= \frac{a}{2}\left(x+ \frac{v_0}{a}\right)^2- \frac{v_0^2}{2a^2}$. "a" here is negative so that this is an "upside down" parabola. When $t= -\frac{v_0}{a}$ it takes its maximum value $-\frac{v_0^2}{2a}$.

For (a), assuming this is on the surface of the earth, set a= -9.81 and solve $\frac{v_0^2}{19.62}= 0.440$ for $v_0$.

For (b), since a parabola is symmetric about its midline, take t equal to twice the "t" above, $-\frac{2v_0}{a}$.

2(2.94)/9.81=.599
 
karush said:
a. If a flea can jumps straight up to a height of 0.440m.
what is the initial speed as it leaves the ground.
b. For how much time is it in the air?

ok I am sure we use this equation

$$x=x_0+v_o^t+\frac{1}{2} at^2$$

I watched another YT on this but it got to much complication
better just to come here

For part a), we could use conservation of energy...initially the flea has kinetic energy, and then when it reaches the apex of its jump, it has potential energy:

$$\frac{1}{2}mv_0^2=mgh$$

Solving for $v_0$, we obtain:

$$v_0=\sqrt{2gh}$$

For part b), we could write:

$$h(t)=\frac{t}{2}\left(2v_0-gt\right)$$

We are interested in the non-zero root, hence:

$$t=\frac{2v_0}{g}=\frac{2\sqrt{2gh}}{g}=2\sqrt{\frac{2h}{g}}$$
 
Back
Top