mathsss2
- 38
- 0
Urgent:
1. let p be prime form 4k+3 and let a be an integer. Prove that a has order p-1 in the group U(\frac{\texbb{Z}}{p\texbb{Z}}) iff -a has order \frac{(p-1)}{2}
2. let p be odd prime explain why: 2*4*...*(p-1)\equiv (2-p)(4-p)*...*(p-1-p)\equiv(-1)^{(p-1)/2}*1*3*...*(p-2)mod p.
3. Using number 2 and wilson's thereom [(p-1)!\equiv-1 mod p] prove 1^23^25^2*...*(p-2)^2\equiv(-1)^{(p-1)/2} mod p
Thanks.
1. let p be prime form 4k+3 and let a be an integer. Prove that a has order p-1 in the group U(\frac{\texbb{Z}}{p\texbb{Z}}) iff -a has order \frac{(p-1)}{2}
2. let p be odd prime explain why: 2*4*...*(p-1)\equiv (2-p)(4-p)*...*(p-1-p)\equiv(-1)^{(p-1)/2}*1*3*...*(p-2)mod p.
3. Using number 2 and wilson's thereom [(p-1)!\equiv-1 mod p] prove 1^23^25^2*...*(p-2)^2\equiv(-1)^{(p-1)/2} mod p
Thanks.
Last edited: