manimaran1605 said:
But still i don't understand what is the use of DIRAC DELTA FUNCTION in quantum mechanics.
Its used so you can have a function that is the eigenfunction of position. The position operator is x f(x) where f(x) is the wave function ie the expansion of the state in terms of position eigenstates. By definition the eigenfunction would be the function δ(x-x') such that x δ(x-x') = x' δ(x-x'), and ∫x δ(x-x') = x'.
Added later:
The above is bit loose. Here is a better way of looking at it. For discreet eigenvalues if yi are the outcomes ∑ yi <bj|bi> = yj because of the orthogonality of the |bi>, <bj|bi> = δij (δij the Kronecker delta - ∑ δij = 1. δij can be taken to be of the form δ(i-j) where δ(x) = 0 if x ≠ 0. 1 if x = 0). If we go over to a continuum then intuitively yi goes to y(x), δij to a function δ (x-x') such that ∫δ (x-x') =1, δ(x) = 0 if x ≠ 0, ∫y(x) δ(x-x') = y(x'). Actually in doing that because we are integrating over dx, we take δij = (δij/dx)dx and δij/dx → Dirac Delta function as dx→0, which is why its infinite when x = 0. This is the definition of the Dirac delta function - which of course doesn't really exit as a function in the usual sense.
Nugatory said:
Y'know, I don't think we're still helping OP here...
For starting out in QM simply think of the Dirac Delta function like you do dx when starting out in calculus. You think, at an intuitive level, of dx as a very small increment in x, so small you can ignore it in calculations, but not zero so you don't have the dreaded divide by zero in dy/dx. The rigorous development requires analysis, the concept of limit etc, but you can get a long way in practice with this intuitive idea.
Same with the Dirac Delta function. Simply think of it as a continuously differentiable function, δ(x) that has the property ∫δ(x)f(x) = f(0). No function does that - but a function does exist that's so close to it that for all practical purposes it has that property. Like dx you can get a long way in practice with that view.
Later you can study the correct theory, just like you study analysis a bit later to understand the correct basis of calculus (here is a link to my favourite book on it):
https://www.amazon.com/dp/0521558905/?tag=pfamazon01-20
After that you can look into how its used in QM via Rigged Hilbert Spaces. Start out with Chapter 2 in Ballentine - QM - A Modern Development. Then proceed to Quantum Mechanics For Mathematicians by Hall.
I got caught up in this stuff early on in my QM education and can assure you to start out don't worry about it. Leave sorting out the exact mathematics for later.
Thanks
Bill