Use the Euclidean algorithm to find integers ## a, b, c ##

Click For Summary
SUMMARY

The forum discussion centers on using the Euclidean algorithm to find integers a, b, c, and d that satisfy the equation 225a + 360b + 432c + 480d = 3. The process simplifies to 75a + 120b + 144c + 160d = 1, leading to the identification of integers a = 3, b = -2, c = -1, and d = 1. The discussion highlights the application of the Euclidean algorithm to compute the greatest common divisors (gcd) of the coefficients involved, ultimately confirming the correctness of the final integer solution.

PREREQUISITES
  • Understanding of the Euclidean algorithm
  • Familiarity with integer linear combinations
  • Knowledge of greatest common divisor (gcd) calculations
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the extended Euclidean algorithm for multiple variables
  • Learn about integer linear programming techniques
  • Explore applications of the Euclidean algorithm in number theory
  • Investigate computational methods for solving linear Diophantine equations
USEFUL FOR

Mathematicians, computer scientists, and students studying number theory or algebra who are interested in solving linear Diophantine equations using the Euclidean algorithm.

Math100
Messages
817
Reaction score
230
Homework Statement
Use the Euclidean algorithm to find integers ## a, b, c ## and ## d ## such that ## 225a+360b+432c+480d=3 ##.
Relevant Equations
None.
Let ## a, b, c ## and ## d ## be integers such that ## 225a+360b+432c+480d=3 ##.
Then ## 75a+120b+144c+160d=1 ##.
Applying the Euclidean algorithm produces:
## gcd(75, 120)=15, gcd(120, 144)=24 ## and ## gcd(144, 160)=16 ##.
Now we see that ## 15x+24y+16z=1 ##.
By Euclidean algorithm, we have that ## gcd(15, 24)=3 ## and ## gcd(24, 16)=8 ##, so ## 3m+8n=1 ##.
Observe that
\begin{align*}
&75A+120B=15\implies 5A+8B=1\\
&120B+144C=24\implies 5B+6C=1\\
&144C+160D=16\implies 9C+10D=1.\\
\end{align*}
This means ## A=-3, B=2, C=-1 ## and ## D=1 ##.
Thus ## -[75(-3)+120(2)]+[144(-1)+160(1)]=-15+16=1 ##.
Therefore, the integers ## a, b, c ## and ## d ## such that ## 225a+360b+432c+480d=3 ## are ## a=3, b=-2, c=-1 ## and ## d=1 ##.
 
Physics news on Phys.org
I don't know the algorithm that you use ...

Math100 said:
Homework Statement:: Use the Euclidean algorithm to find integers ## a, b, c ## and ## d ## such that ## 225a+360b+432c+480d=3 ##.
Relevant Equations:: None.

Let ## a, b, c ## and ## d ## be integers such that ## 225a+360b+432c+480d=3 ##.
Then ## 75a+120b+144c+160d=1 ##.
Applying the Euclidean algorithm produces:
## gcd(75, 120)=15, gcd(120, 144)=24 ## and ## gcd(144, 160)=16 ##.
Now we see that ## 15x+24y+16z=1 ##.
By Euclidean algorithm, we have that ## gcd(15, 24)=3 ## and ## gcd(24, 16)=8 ##, so ## 3m+8n=1 ##.
Observe that
\begin{align*}
&75A+120B=15\implies 5A+8B=1\\
&120B+144C=24\implies 5B+6C=1\\
&144C+160D=16\implies 9C+10D=1.\\
\end{align*}
This means ## A=-3, B=2, C=-1 ## and ## D=1 ##.
... and ##5B+6C=5\cdot 2 - 6 \cdot 1=4\neq 1## ...
Thus ## -[75(-3)+120(2)]+[144(-1)+160(1)]=-15+16=1 ##.
Therefore, the integers ## a, b, c ## and ## d ## such that ## 225a+360b+432c+480d=3 ## are ## a=3, b=-2, c=-1 ## and ## d=1 ##.
... but your final result is correct, presumably because you did not use the equation in the middle.
 
fresh_42 said:
I don't know the algorithm that you use ...... and ##5B+6C=5\cdot 2 - 6 \cdot 1=4\neq 1## ...

... but your final result is correct.
I apologize, I do not really know how to completely use the Euclidean algorithm when there are four variables to solve for. So I was making some of the stuffs up. What should be the correct way to do this?
 
Math100 said:
I apologize, I do not really know how to completely use the Euclidean algorithm when there are four variables to solve for. So I was making some of the stuffs up. What should be the correct way to do this?
You did not use the equation in the middle, so the result came out fine. I, too, only know the algorithm for two numbers, but your solution is ok. Just delete the equation in the middle.
 
  • Like
Likes   Reactions: Math100
fresh_42 said:
You did not use the equation in the middle, so the result came out fine. I, too, only know the algorithm for two numbers, but your solution is ok. Just delete the equation in the middle.
But is there another, perfect way to do this by the Euclidean algorithm?
 
We want to solve ##75a+120b+144c+160d=1## and we know ##\operatorname{gcd}(75,120,144,160)=1.##
But
\begin{align*}
\operatorname{gcd}(75,120,144,160)&=\operatorname{gcd}(75,\operatorname{gcd}(120,144,160))\\
&=\operatorname{gcd}(75,\operatorname{gcd}(120,\operatorname{gcd}(144,160))
\end{align*}
We can use the Euclidean algorithm to solve ##\operatorname{gcd}(a,b)=n\cdot a+ m\cdot b.## So
\begin{align*}
\operatorname{gcd}(144,160)&=16=(-1)\cdot 144 + 1\cdot 160\\
\operatorname{gcd}(120,16)&=8= (-1)\cdot 120 +8 \cdot 16\\
\operatorname{gcd}(75,8)&=1=3\cdot 75+ (-28)\cdot 8
\end{align*}
I have not really used the algorithm, I "saw" the equations. A correct application of the algorithm would be, e.g.
\begin{align*}
\underline{75} &= 9\cdot \underline{8} +\underline{3}\\
\underline{8}&=2\cdot \underline{3} + \underline{2}\\
\underline{3}&=1\cdot \underline{2} +\underline{1}\\
\underline{1}&=2\cdot \underline{1} + \underline{0}\\
&\Longrightarrow \\
\underline{1}&=\underline{3}-1\cdot \underline{2}\\&=\underline{3}- 1\cdot (\underline{8}-2\cdot \underline{3})\\&=3\cdot \underline{3}- \underline{8}\\
&=3\cdot (\underline{75}-9\cdot \underline{8})-\underline{8}\\&=3\cdot \underline{75} + (-28)\cdot \underline{8}
\end{align*}
and a computer would prefer this algorithm, but "seeing" it is definitely shorter.

So what do we have now?
\begin{align*}
\underline{1}&=3\cdot \underline{75}+ (-28)\cdot \underline{8}\\
&=3\cdot \underline{75} + (-28)( (-1)\cdot \underline{120} +8 \cdot \underline{16})\\
&=3\cdot \underline{75} + (-28)( (-1)\cdot \underline{120} +8 \cdot ((-1)\cdot \underline{144} + 1\cdot \underline{160} ))\\
&=3\cdot \underline{75} +28\cdot \underline{120} + 224\cdot \underline{144} +(-244)\cdot\underline{160}
\end{align*}

This is what a computer would do. And, sorry, took me quite a while to type and check.

I like your version better. It is what a human would do.
 
  • Like
Likes   Reactions: Math100

Similar threads

Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 6 ·
Replies
6
Views
7K
Replies
9
Views
3K
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
5K