sikrut
- 48
- 1
Using contour integration and the residue theorem, evaluate the following
"Fourier" integral:
F_1(t) := \int_{-\infty}^\infty \frac{\Gamma sin(\omega t)}{\Gamma^2 + (\omega +\Omega )^2} dw
with real-valued constants \Gamma > 0 and \Omega. Express your answers in terms of t, \Gamma and \Omega.
Hints: Before starting the contour integral formulation:
(1) Since cos(\omega t) = Re(e^{i \omega t}) and sin(\omega t) = Im(e^{i \omega t}), write F1 as either the real part or the imaginary part of complex-valued integrals where the cos- and sin-functions have been replaced by the eiwt function, using e.g., \int_{-\infty}^{+\infty} Re[f(\omega)]d\omega = Re[\int_{-\infty}^{+\infty} f(\omega)d\omega].
(2) Get rid of the \Gamma and \Omega parameters insde the integrals, by the following substitutions:
express \omega by x := (\omega - \Omega)/\Gamma;
t by s := \Gamma t,
and \Omega by \nu := \Omega/\Gamma.
(3) Depending on the sign of t, then "close" the real-axis contour with a semi-circle of radius R either in the upper half or in the lower half of the complex plane such that contribution from the semi-circle vanishes in the limit of R \rightarrow \infty.
(5) Use your Residue Recipes to find the residues and complete the calculation.
Attempt:
F_1(t) := \int_{-\infty}^\infty \frac{\Gamma sin(\omega t)}{\Gamma^2 + (\omega +\Omega )^2} dw
= \int_{-\infty}^\infty \frac{\Gamma Im(e^{i \omega t})}{\Gamma^2 + (\omega +\Omega )^2} dw
= Im(\int_{-\infty}^\infty \frac{\Gamma e^{i \omega t}}{\Gamma^2 + (\omega +\Omega )^2} dw)
\omega \rightarrow x:= (\omega - \Omega)/\Gamma \rightarrow \omega = \Gamma x + \Omega \rightarrow d\omega = \Gamma dx
t \rightarrow s := \Gamma t \rightarrow t= s/\Gamma
\Omega \rightarrow \nu := \Omega/\Gamma
\omega t = \frac{\Gamma x + \Omega)s}{\Gamma} = (x + \frac{\Omega}{\Gamma})s = (x+\nu)s
where: I = \int_{-\infty}^\infty \frac{\Gamma e^{i \omega t}}{\Gamma^2 + (\omega +\Omega )^2} dw
I = \int_{-\infty}^\infty \frac{\Gamma^2 e^{i(x+\nu)s}}{\Gamma^2 (x^2 + 1)}dx = \int_{-\infty}^\infty \frac{e^{i(x+\nu)s}}{(x^2 + 1)}dx = e^{i \nu s}\int_{-\infty}^\infty \frac{e^{ixs}}{(x+i)(x-i)}dxNow, I know that the next step is concatenating the line with with the semicircle, but I am not quite sure how to go about setting it up:
I = \int_{I_R^+} + \int_{C_R^+} - \int_{C_R^-}
I = \oint_{P_R^+} -\int_{C_R^-}
"Fourier" integral:
F_1(t) := \int_{-\infty}^\infty \frac{\Gamma sin(\omega t)}{\Gamma^2 + (\omega +\Omega )^2} dw
with real-valued constants \Gamma > 0 and \Omega. Express your answers in terms of t, \Gamma and \Omega.
Hints: Before starting the contour integral formulation:
(1) Since cos(\omega t) = Re(e^{i \omega t}) and sin(\omega t) = Im(e^{i \omega t}), write F1 as either the real part or the imaginary part of complex-valued integrals where the cos- and sin-functions have been replaced by the eiwt function, using e.g., \int_{-\infty}^{+\infty} Re[f(\omega)]d\omega = Re[\int_{-\infty}^{+\infty} f(\omega)d\omega].
(2) Get rid of the \Gamma and \Omega parameters insde the integrals, by the following substitutions:
express \omega by x := (\omega - \Omega)/\Gamma;
t by s := \Gamma t,
and \Omega by \nu := \Omega/\Gamma.
(3) Depending on the sign of t, then "close" the real-axis contour with a semi-circle of radius R either in the upper half or in the lower half of the complex plane such that contribution from the semi-circle vanishes in the limit of R \rightarrow \infty.
(5) Use your Residue Recipes to find the residues and complete the calculation.
Attempt:
F_1(t) := \int_{-\infty}^\infty \frac{\Gamma sin(\omega t)}{\Gamma^2 + (\omega +\Omega )^2} dw
= \int_{-\infty}^\infty \frac{\Gamma Im(e^{i \omega t})}{\Gamma^2 + (\omega +\Omega )^2} dw
= Im(\int_{-\infty}^\infty \frac{\Gamma e^{i \omega t}}{\Gamma^2 + (\omega +\Omega )^2} dw)
\omega \rightarrow x:= (\omega - \Omega)/\Gamma \rightarrow \omega = \Gamma x + \Omega \rightarrow d\omega = \Gamma dx
t \rightarrow s := \Gamma t \rightarrow t= s/\Gamma
\Omega \rightarrow \nu := \Omega/\Gamma
\omega t = \frac{\Gamma x + \Omega)s}{\Gamma} = (x + \frac{\Omega}{\Gamma})s = (x+\nu)s
where: I = \int_{-\infty}^\infty \frac{\Gamma e^{i \omega t}}{\Gamma^2 + (\omega +\Omega )^2} dw
I = \int_{-\infty}^\infty \frac{\Gamma^2 e^{i(x+\nu)s}}{\Gamma^2 (x^2 + 1)}dx = \int_{-\infty}^\infty \frac{e^{i(x+\nu)s}}{(x^2 + 1)}dx = e^{i \nu s}\int_{-\infty}^\infty \frac{e^{ixs}}{(x+i)(x-i)}dxNow, I know that the next step is concatenating the line with with the semicircle, but I am not quite sure how to go about setting it up:
I = \int_{I_R^+} + \int_{C_R^+} - \int_{C_R^-}
I = \oint_{P_R^+} -\int_{C_R^-}
Last edited: