Using Stoke's theorem on an off-centre sphere

Click For Summary
SUMMARY

This discussion focuses on the application of Stokes' theorem to an off-center sphere, specifically addressing the integral relationship between a vector field and its curl over a surface. The vector field is defined as F = (y, z, x), with its curl calculated as curl F = (-1, -1, -1). The participants clarify the process of finding the unit normal vector and emphasize that the surface integral can be simplified by choosing the planar disk as the surface, leading to the conclusion that the integral over any surface bounded by the curve yields the same result.

PREREQUISITES
  • Understanding of Stokes' theorem and its mathematical formulation
  • Familiarity with vector calculus, particularly curl and surface integrals
  • Knowledge of polar coordinates and their application in double integrals
  • Ability to compute gradients and normal vectors from scalar fields
NEXT STEPS
  • Study the implications of Stokes' theorem in different coordinate systems
  • Learn about vector fields and their properties in three-dimensional space
  • Explore advanced applications of curl in physics and engineering contexts
  • Investigate the relationship between surface integrals and line integrals in vector calculus
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are working with vector calculus, particularly those focusing on the applications of Stokes' theorem in complex geometries.

Morbidly_Green
Messages
12
Reaction score
0

Homework Statement



Screen Shot 2018-06-03 at 15.15.05.png

Homework Equations


Stokes theorem
$$\int_C \textbf{F} . \textbf{dr} = \int_S \nabla \times \textbf{F} . \textbf{ds}$$

The Attempt at a Solution


IMG_0114.JPG


I have the answer to the problem but mine is missing a factor of$$\sqrt 2 $$ I can't seem to find my error
 

Attachments

  • Screen Shot 2018-06-03 at 15.15.05.png
    Screen Shot 2018-06-03 at 15.15.05.png
    14.4 KB · Views: 834
  • IMG_0114.JPG
    IMG_0114.JPG
    20.1 KB · Views: 787
Physics news on Phys.org
Please write out your attempt instead of attaching an image of it. I cannot read what is in your image.
 
Apologies for that:

F= (y,z,x)
curl F = (-1,-1,-1)

Projecting the surface on the x-y plane:

Take ##\Phi = z- \sqrt{2b(x+y)-x^2 -y^2} = 0## from the equation of the surface to find the normal n. Then $$\textbf{n} = \dfrac{\nabla\Phi}{|\nabla\Phi|} = \dfrac{\left(\dfrac{x-b}{\sqrt{2b(x+y)-x^2 -y^2}} , \dfrac{y-b}{\sqrt{2b(x+y)-x^2 -y^2}},1\right)}{\dfrac{\sqrt{2}b}{\sqrt{2b(x+y)-x^2 -y^2}}}$$

Now ##ds = \dfrac{dx dy}{\textbf{n}.\textbf{k}} = \dfrac{\sqrt{2}b}{\sqrt{2b(x+y)-x^2 -y^2}} dxdy ##

$$\therefore \int_{S}\nabla \times \textbf{F}.\textbf{ds} = -\int\int dxdy = -\int^{2\pi}_{0}\int^{\sqrt{2}b}_{0} r \ dr d\theta = -2\pi b^2$$

Where for the change to polar coordinates was taken as ##x=rcos\theta +b , y=rsin\theta +b##
 
The plane ##x + y +0z= 2b## has unit normal ##\hat n = \frac 1 {\sqrt 2}\langle 1,1,0\rangle## in the correct direction. So $$
\oint_C \vec F\cdot dr = \iint_S \langle -1,-1,-1\rangle \cdot \frac 1 {\sqrt 2}\langle 1,1,0\rangle ~dS
=-\frac 2 {\sqrt 2} \cdot \text{Area of circle}$$
You don't need to jump through all those hoops to get the unit normal to a plane nor work the area integral.
Edit, added: What's worse, the plane is vertical and can't be expressed as a function of ##x## and ##y##.
 
LCKurtz said:
The plane ##x + y +0z= 2b## has unit normal ##\hat n = \frac 1 {\sqrt 2}\langle 1,1,0\rangle## in the correct direction. So $$
\oint_C \vec F\cdot dr = \iint_S \langle -1,-1,-1\rangle \cdot \frac 1 {\sqrt 2}\langle 1,1,0\rangle ~dS
=-\frac 2 {\sqrt 2} \cdot \text{Area of circle}$$
You don't need to jump through all those hoops to get the unit normal to a plane nor work the area integral.
Edit, added: What's worse, the plane is vertical and can't be expressed as a function of ##x## and ##y##.

So this is taking the surface to be the circle ? Thats much simpler then, thanks!
 
Morbidly_Green said:
So this is taking the surface to be the circle ? Thats much simpler then, thanks!
Yes. It doesn't matter what surface is bounded by the curve. No matter which surface you use, its surface integral is equal to the same ##\int_C \vec F\cdot dr##, so they are all equal. So you can evaluate the surface integral over simplest such surface, which is the planar disk.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 21 ·
Replies
21
Views
4K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K