- #1
Zack K
- 166
- 6
Homework Statement
Integrate: $$\int \frac{dx}{x^2\sqrt{4-x^2}}dx$$
Homework Equations
The Attempt at a Solution
I got to the final solution ##\int \frac{dx}{x^2\sqrt{4-x^2}}dx=-\frac{1}{4}cot(arcsin(\frac{1}{2}x))##. But It's the method where you transform that to the solution ##-\frac{1}{4}cot(arcsin(\frac{1}{2}x))=-\frac{\sqrt{4-x^2}}{x}+C## that confuses me. I understand that you get that by seeing that on a right triangle, ##cot=\frac{adjacent}{opposite}##, but how do you know the value of the opposite, adjacent and hypotenuse?
Last edited: