V required so ions passing through the region don't devitate

Click For Summary

Homework Help Overview

The problem involves hydrogen ions moving through a region with combined electric and magnetic fields. The task is to determine the potential difference V required for the ions to pass through without deviation, given their speed and the characteristics of the fields present.

Discussion Character

  • Exploratory, Assumption checking, Conceptual clarification

Approaches and Questions Raised

  • Participants discuss the conditions necessary for ions to remain undeflected in the presence of electric and magnetic fields. There are attempts to derive expressions and clarify the forces acting on the ions. Some participants question the validity of the provided answer for the kinetic energy of the ions.

Discussion Status

The discussion is ongoing, with participants exploring various approaches to the problem. Some have suggested using symbolic representations rather than numerical values initially, while others are clarifying the roles of the electric and magnetic forces. There is no explicit consensus yet, but several productive lines of inquiry are being pursued.

Contextual Notes

Participants note potential confusion regarding the charge of the hydrogen ion and the purpose of the parallel plates in the setup. There are also discussions about the relevance of mass in the context of the forces acting on the ions.

  • #31
moenste said:

Homework Statement


Hydrogen ions moving at various speeds are directed at a region of combined electric and magnetic fields as shown in the diagram below. The electric field is between two parallel plates 10 mm apart with a potential difference V across them, while the magnetic field of flux density 0.1 T is at right angles to the electric field.

5718ee396b15.jpg


(a) Calculate the value of V required so that ions of speed 100 m s-1 pass through the region of the two fields without being deviated.

(b) What is the kinetic energy per ion as they leave the combined fields?

(1 u = 1.67 * 10-27 kg.)

Answers: (a) 0.1 V, (b) 8.4 * 10-24 J.

2. The attempt at a solution
(a) Can't get it right. I use 0.5 m v2 = e V, where we don't know the mass m. I then tried to use F = B e v = 0.1 * 1.6 * 10-19 * 100 = 1.6 * 10-18 N and then F = m g so m = F / g = 1.6 * 10-18 / 10 = 1.6 * 10-19 kg -- not correct.

I also used B e v = m v2 / r so m = B e r / v = 0.1 * 1.6 * 10-19 * 0.01 / 100 = 1.6 * 10-24 kg. Also not correct.

I even thought that since we have hydrogen then its relative atomic mass is 1.008 and so 1.008 * 1.67 * 10-27 = 1.68 * 10-27 kg, also not correct.

If we plug in 0.1 V (which we need to find) into the first formula we'll get m = 3.2 * 10-24 kg. But I've got no idea how to find it.
The ions experience a force due to the electric field between the parallel plates...do you know how to calculate this?
They also experience a force due to the magnetic field...do you know how to calculate this
 
  • Like
Likes   Reactions: moenste
Physics news on Phys.org
  • #32
cnh1995 said:
No. Read #19 again. Basically, why does the question ask for voltage? Which force does that suggest?
Potential difference? EMF?

gneill said:
I'm not sure why you seem to being denying the existence of the electric field between the plates :oldconfused: You seem to be going out of your way to avoid mentioning it. Perhaps you haven't been introduced to electric fields between parallel plates?

The purpose of the plates with a potential difference V is to establish an electric field between them. Now. What is the force on a charge in a uniform electric field E?
lychette said:
The ions experience a force due to the electric field between the parallel plates...do you know how to calculate this?
They also experience a force due to the magnetic field...do you know how to calculate this
F = e V in electric and F = B e v in magnetic fields?

e V = B e v
V = B v = 0.1 * 100 = 10 V, not 0.1 V.
 
  • #33
moenste said:
F = e V in electric and F = B e v in magnetic fields?
The second one is correct but the first is not. You should familiarize yourself with the difference between potential difference V in Volts (which is a name given to the unit combination Joules/Coulomb) and an electric field E in Volts/m (which is also the same as Newtons per Coulomb). e V (charge in Coulombs times potential difference in Volts) would yield a result in Joules (energy) not a force.

The potential difference between the plates (V) establishes an electric field (E) in the gap between the plates. You should do a bit of research on this so you know how to determine one from the other. Perhaps look up "electric field parallel plates" with a search engine.
 
  • Like
Likes   Reactions: moenste and cnh1995
  • #34
moenste said:
e V = B e v
First term is incorrect. And the charge should be q instead of e since the ion is not an electron.
 
  • Like
Likes   Reactions: moenste
  • #35
cnh1995 said:
First term is incorrect. And the charge should be q instead of e since the ion is not an electron.
e is commonly used to refer to the unit of elementary charge though, so it actually works in this case. I'd be more picky about this if the ions involved had a different charge than a single elementary charge.
 
  • Like
Likes   Reactions: moenste
  • #36
cnh1995 said:
First term is incorrect. And the charge should be q instead of e since the ion is not an electron.
gneill said:
e is commonly used to refer to the unit of elementary charge though, so it actually works in this case. I'd be more picky about this if the ions involved had a different charge than a single elementary charge.
Maybe it's e E = B e v?
 
  • #37
moenste said:
Maybe it's e E = B e v?
Right. So how would you proceed then?
 
  • Like
Likes   Reactions: moenste
  • #38
moenste said:
Maybe it's e E = B e v?
Yes, that is a valid expression of the condition that the magnitude of the electric force balances the magnitude of the magnetic force on the moving charge. The result of course is no net force, so no deviation.
 
  • Like
Likes   Reactions: moenste
  • #39
cnh1995 said:
Right. So how would you proceed then?
E = B v = 0.1 * 100 = 10 V, not 0.1 V.
 
  • #40
moenste said:
E = B v = 0.1 * 100 = 10 V, not 0.1 V.
That is the expression for electric field, not voltage. How is electric field related to voltage?
 
  • Like
Likes   Reactions: moenste
  • #41
moenste said:
E = B v = 0.1 * 100 = 10 V, not 0.1 V.

You've found the magnitude of E, but check your units: The units of E are not volts! What's the expression for the electric field established between parallel plates?
 
  • Like
Likes   Reactions: moenste
  • #42
cnh1995 said:
That is the expression for electric field, not voltage. How is electric field related to voltage?
E = V / d?
 
  • #43
moenste said:
E = V / d?
Yes!

It's easy to remember because the units of E are volts/m.
 
  • Like
Likes   Reactions: moenste
  • #44
gneill said:
Yes!

It's easy to remember because the units of E are volts/m.
Why do we need it? We need to find V and we don't know E.
 
  • #45
moenste said:
Why do we need it? We need to find V and we don't know E.
You found E in post #39.
 
  • Like
Likes   Reactions: moenste
  • #46
gneill said:
You found E in post #39.
So, E = V / d, V = B v d = 0.1 * 100 * (10 / 10 / 100) = 0.1 V.

How do we find the kinetic energy per ion?
KE = 0.5 m v2 = 0.5 * 1.67 * 10-27 * 1002 = 8.35 * 10-24 J?
 
Last edited:
  • #47
moenste said:
So, E = V / d, V = B v d = 0.1 * 100 * (10 / 10 / 100) = 0.1 V.

How do we find the kinetic energy per ion?
KE = 0.5 m v2 = 0.5 * 1.67 * 10-27 * 1002 = 8.35 * 10-24 J?
Yes and yes.
 
  • Like
Likes   Reactions: moenste

Similar threads

Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
9K
Replies
19
Views
5K
  • · Replies 13 ·
Replies
13
Views
2K