MHB Value of Irrational Number π (Part 2)

mathdad
Messages
1,280
Reaction score
0
The value of irrational number π, correct to ten decimal places (without rounding), is 3.1415926535. By using your calculator, determine to how many decimal places the following quantity (22/7) agrees with π.

Extra notes from textbook:

Archimedes (287-212 B.C.) showed that
(223/71) < π < 22/7. The use of the approximation (22/7) for π was introduced to the western world through the writings of Boethius (ca 480-520), a Roman philosopher, mathematician, and statesman. Among all fractions with numerators and denominators less than 100, the fraction (22/7) is the best appriximation to π. Do you agree?

I was wondering if this question can be answered without a calculator. Can we show that (22/7) in terms of decimal places agrees with pi?
 
Last edited:
Mathematics news on Phys.org
Comparing $22/7$ with $$\pi$$ is simple if you have a calculator or use long division. Choosing the best approximation with denominators less than 100 is trickier. I would write a program for this.
 
Last edited:
Evgeny.Makarov said:
Comparing $22/7$ with $$\pi$$ is simple if you have a calculator or use along division. Choosing the best approximation with denominators less than 100 is trickier. I would write a program for this.

How it is done without using a calculator?
 
RTCNTC said:
How it is done without using a calculator?

Evgeny.Makarov said:
use long division.
...
 
Evgeny.Makarov said:
...

The original question has been edited.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top