I Vanadium oxide oxidation states binding energy -- unequal spacing

sliqu
Messages
1
Reaction score
0
TL;DR Summary
Hello,
How come in XPS the binding energy gaps between oxidation states of vanadium oxide are not equally spaced? Is there a reason they are not all equally spaced?
Hello, How come in XPS the binding energy gaps between oxidation states of vanadium oxide are not equally spaced? Is there a reason they are not all equally spaced? V2+ (VO) 513.0 eV V3+ (V2O3) 515.6 eV V4+ (VO2) 516.0 eV V5+ (V2O5) 517.1 eV Many thanks
 
Physics news on Phys.org
Your link was a pointer to an empty page - removed. Please try again.
 
Why would you expect them to be equally spaced? They’re in different chemical environments.
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...

Similar threads

Replies
30
Views
5K
Back
Top