Undergrad Variation of Four-Velocity Vector w/ Respect to Metric Tensor

Click For Summary
The discussion centers on deriving the variation of the four-velocity vector Uμ with respect to the metric tensor gαβ. Rafael seeks assistance in demonstrating that δUμ equals 1/2 UμδgαβUαUβ. A suggestion is made to utilize LaTex for better presentation of equations, as the forum supports MathJax. The responder advises proving the relationship δg^{αβ}UαUβ = 2 UμδUμ first, then applying the condition UμUμ = 1 to facilitate the derivation. The conversation emphasizes the importance of clear mathematical representation in physics discussions.
Hubble_92
Messages
1
Reaction score
0
Hi everyone! I'm having some difficulty showing that the variation of the four-velocity,

Uμ=dxμ/dτ

with respect the metric tensor gαβ is

δUμ=1/2 UμδgαβUαUβ

Does anyone have any suggestion?

Cheers,
Rafael.

PD: Thanks in advances for your answers; this is my first post! I think ill be active sharing and discussing in other Physics/ Astrophysics topics ;)
 
Physics news on Phys.org
Hubble_92 said:
Hi everyone! [...] PD: Thanks in advances for your answers; this is my first post! I think ill be active sharing and discussing in other Physics/ Astrophysics topics ;)
Just a suggestion for the future. Please, use the LaTex code. This website has MathJax implemented, so that the equations are made to look great. Just search here for a tutorial on how to write with the simple code.
 
  • Like
Likes martinbn, vanhees71 and Hubble_92
First prove that
\delta g^{\alpha\beta}U_{\alpha}U_{\beta} = 2 U_{\mu}\delta U^{\mu}. \ \ \ \ \ \ \ (1) Then, using U_{\mu}U^{\mu} = 1, you can write the left-hand-side of (1) as
\delta g^{\alpha \beta}U_{\alpha}U_{\beta} \equiv 2 U_{\mu} \left( \frac{1}{2}U^{\mu} \delta g^{\alpha \beta}U_{\alpha}U_{\beta}\right) . \ \ \ \ \ (2)
The result follows by comparing (1) with (2).
 
  • Like
Likes anuttarasammyak, vanhees71, PeroK and 1 other person
In an inertial frame of reference (IFR), there are two fixed points, A and B, which share an entangled state $$ \frac{1}{\sqrt{2}}(|0>_A|1>_B+|1>_A|0>_B) $$ At point A, a measurement is made. The state then collapses to $$ |a>_A|b>_B, \{a,b\}=\{0,1\} $$ We assume that A has the state ##|a>_A## and B has ##|b>_B## simultaneously, i.e., when their synchronized clocks both read time T However, in other inertial frames, due to the relativity of simultaneity, the moment when B has ##|b>_B##...

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K