- #1

- 18

- 0

Use the method of variation of parameters to find a particular solution of http://forums.cramster.com/Answer-Board/Image/cramster-equation-2006491914366328020687673812501253.gif [Broken]

ok i know first i do http://forums.cramster.com/Answer-Board/Image/cramster-equation-200649191556328020690592562506754.gif [Broken] then r = +/- 1i then i make that into the equation http://forums.cramster.com/Answer-Board/Image/cramster-equation-2006491921376328020729751937507714.gif [Broken] so cosx is http://forums.cramster.com/Answer-Board/Image/cramster-equation-2006491919466328020718630062506728.gif [Broken] and sinx is http://forums.cramster.com/Answer-Board/Image/cramster-equation-200649192286328020732811312508515.gif [Broken] so now the wronskian is w= http://forums.cramster.com/Answer-Board/Image/cramster-equation-2006491923196328020739986312508678.gif [Broken] which would be (cosx)(cosx) - (sinx)(-sinx). Now what do I do from here? I remeber something about integrals being used next, such as http://forums.cramster.com/Answer-Board/Image/cramster-equation-2006491928116328020769126937507389.gif [Broken] and a u2 integral

ok i know first i do http://forums.cramster.com/Answer-Board/Image/cramster-equation-200649191556328020690592562506754.gif [Broken] then r = +/- 1i then i make that into the equation http://forums.cramster.com/Answer-Board/Image/cramster-equation-2006491921376328020729751937507714.gif [Broken] so cosx is http://forums.cramster.com/Answer-Board/Image/cramster-equation-2006491919466328020718630062506728.gif [Broken] and sinx is http://forums.cramster.com/Answer-Board/Image/cramster-equation-200649192286328020732811312508515.gif [Broken] so now the wronskian is w= http://forums.cramster.com/Answer-Board/Image/cramster-equation-2006491923196328020739986312508678.gif [Broken] which would be (cosx)(cosx) - (sinx)(-sinx). Now what do I do from here? I remeber something about integrals being used next, such as http://forums.cramster.com/Answer-Board/Image/cramster-equation-2006491928116328020769126937507389.gif [Broken] and a u2 integral

Last edited by a moderator: