How Does Changing the Right-Hand Side of the Matrix Affect the ODE Solution?

Bruno Tolentino
Messages
96
Reaction score
0
Given a ODE like this:

y''(t) - (a + b) y'(t) + (a b) y(t) = x(t)

The general solution is: y(t) = A exp(a t) + B exp(b t) + u(t) exp(a t) + v(t) exp(b t)

So, for determine u(t) and v(t), is used the method of variation of parameters:
<br /> \begin{bmatrix}<br /> u&#039;(t)\\ <br /> v&#039;(t)\\<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> y_1(t) &amp; y_2(t) \\<br /> y_1&#039;(t) &amp; y_2&#039;(t) \\<br /> \end{bmatrix}^{-1}<br /> \begin{bmatrix}<br /> 0\\ <br /> x(t)\\<br /> \end{bmatrix} Where:

y1(t) = exp(a t)
y2(t) = exp(b t)

So, my question is: AND IF the matrix equation above woud be like this:
\begin{bmatrix}<br /> u&#039;(t)\\ <br /> v&#039;(t)\\<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> y_1(t) &amp; y_2(t) \\<br /> y_1&#039;(t) &amp; y_2&#039;(t) \\<br /> \end{bmatrix}^{-1}<br /> \begin{bmatrix}<br /> x_1(t)\\ <br /> x_2(t)\\<br /> \end{bmatrix}

How would be the right side of the ODE for matrix equation above?

Would be like this:
y''(t) - (a + b) y'(t) + (a b) y(t) = x1(t) + x2(t)

Or like this:
y''(t) - (a + b) y'(t) + (a b) y(t) = x1(t)
y''(t) - (a + b) y'(t) + (a b) y(t) = x2(t)

Or other form?
 
Physics news on Phys.org
Bruno Tolentino said:
Given a ODE like this:

y''(t) - (a + b) y'(t) + (a b) y(t) = x(t)

The general solution is: y(t) = A exp(a t) + B exp(b t) + u(t) exp(a t) + v(t) exp(b t)

So, for determine u(t) and v(t), is used the method of variation of parameters:
<br /> \begin{bmatrix}<br /> u&#039;(t)\\<br /> v&#039;(t)\\<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> y_1(t) &amp; y_2(t) \\<br /> y_1&#039;(t) &amp; y_2&#039;(t) \\<br /> \end{bmatrix}^{-1}<br /> \begin{bmatrix}<br /> 0\\<br /> x(t)\\<br /> \end{bmatrix} Where:

y1(t) = exp(a t)
y2(t) = exp(b t)

So, my question is: AND IF the matrix equation above woud be like this:
\begin{bmatrix}<br /> u&#039;(t)\\<br /> v&#039;(t)\\<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> y_1(t) &amp; y_2(t) \\<br /> y_1&#039;(t) &amp; y_2&#039;(t) \\<br /> \end{bmatrix}^{-1}<br /> \begin{bmatrix}<br /> x_1(t)\\<br /> x_2(t)\\<br /> \end{bmatrix}

How would be the right side of the ODE for matrix equation above?
I don't see how you could get the matrix equation you show, with ##
\begin{bmatrix}
x_1(t)\\
x_2(t)\\
\end{bmatrix}## on the right. The zero term in the
##\begin{bmatrix}
0\\
x(t)\\
\end{bmatrix}##
vector comes from the homogeneous equation, which in this context is y'' -(a + b)y' + (ab)y = 0. The x(t) term in that vector comes from the related nonhomogeneous equation, which is y'' -(a + b)y' + (ab)y = x(t).
Bruno Tolentino said:
Would be like this:
y''(t) - (a + b) y'(t) + (a b) y(t) = x1(t) + x2(t)

Or like this:
y''(t) - (a + b) y'(t) + (a b) y(t) = x1(t)
y''(t) - (a + b) y'(t) + (a b) y(t) = x2(t)
Bruno Tolentino said:
The form above doesn't make any sense to me. the expression on the left side can't be equal to two different expressions.
Or other form?
 
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top