Varying determinant of a metric

  • Thread starter Thread starter pleasehelpmeno
  • Start date Start date
  • Tags Tags
    Determinant Metric
pleasehelpmeno
Messages
154
Reaction score
0
Hi does anyone know how to calculate:

\delta (det|g_{\mu\nu}|) or simply \delta g
 
Physics news on Phys.org
Or equivalently,

δg = g gμν δgμν
 
You should get δg=ggμνδ(gμν)
Actually I believe this answer has a sign error, and does not correspond to what I wrote, since δgμν = - gμα gνβ δgαβ.

A quick way to check the sign is to consider a special case, gμν = λ ημν under the variation δλ. For this case,

gμν = λ-1 ημν and g = -λ4, so δgμν = ημν δλ and δg = -4 λ3 δλ.

The minus sign agrees with the expression I gave, namely g gμν δgμν = (-λ4)(λ-1ημν)(ημν δλ).

However the other expression g gμν δ(gμν) = (-λ4)(λ ημν)(-λ-2) (ημν δλ) comes out positive, which is incorrect.
 
Bill_K said:
Actually I believe this answer has a sign error, and does not correspond to what I wrote, since δgμν = - gμα gνβ δgαβ.

A quick way to check the sign is to consider a special case, gμν = λ ημν under the variation δλ. For this case,

gμν = λ-1 ημν and g = -λ4, so δgμν = ημν δλ and δg = -4 λ3 δλ.

The minus sign agrees with the expression I gave, namely g gμν δgμν = (-λ4)(λ-1ημν)(ημν δλ).

However the other expression g gμν δ(gμν) = (-λ4)(λ ημν)(-λ-2) (ημν δλ) comes out positive, which is incorrect.

You're right. Thanks for the correction.
 
yeah thanks i knew the answer but had absolutely no idea how to get it, I end up with g^{\nu\rho}g_{p\mu}\delta g^{\mu p}=-g^{\nu\rho}g^{\mu p} \delta g_{p\mu} and am not sure how to proceed from here, there is clearly relabelling but I am still a bit stuck.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top