Varying Energy in a Schwartzschild Metric

  • Thread starter Thread starter Meselwulf
  • Start date Start date
  • Tags Tags
    Energy Metric
Meselwulf
Messages
125
Reaction score
0
This short work will help to calculate the varying energy for a non-rotating spherical distribution of mass.

The Energy changing in a Schwartzschild Metric

It is not obvious how to integrate an energy in the Schwartzschild metric unless you derive it correctly. The way this following metric will be presented will be:

\int_{t}^{t'} c^2 d\tau^2 dt = \int_{t}^{t'} (1 - 2\frac{Gm}{\Delta E} \frac{M}{r_s} c^2 dt^{2}) - \frac{dt}{(1-2\frac{Gm}{\Delta E} \frac{M}{r_s})} - r^2 d \phi dt

This will be interpeted as

\int_{t}^{t'} c^2 d\tau^2 dt = \int_{t}^{t'} (1 - 2\frac{Gm}{E - E'} \frac{M}{r_s} c^2 dt^{2}) - \frac{dt}{(1-2\frac{Gm}{E - E'} \frac{M}{r_s})} - r^2 d \phi dt

And this metric is dimensionally-consistent to calculate the energy changes within a metric. Usually, in the spacetime metric, we treat it as a energy efficient fabric. This can be a way to treat a metric with a type of energy variation consistent perhaps with a radiating body.
 
Last edited:
Mathematics news on Phys.org
I was inspired to find a more simple example of a varying energy from Loyd Motz' paperA Gravity Generation of Electromagntic Radiation and the Luminosity of QuasarsI can't link
 
Sorry.. was in a rush when I wrote this, I forgot my dummy variables, inserted now.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top