U.Renko
- 56
- 1
I must become good at this ASAP.
prove \vec{\nabla}\cdot (\vec{a}\times\vec{b} ) = \vec{b} \cdot(\vec\nabla\times\vec{a}) - \vec{a}\cdot(\vec\nabla\times\vec{b})
\vec a \times \vec b = \epsilon_{ijk}\vec a_j \vec b_k
\vec\nabla\cdot = \Large\frac{\partial}{\partial x_i}
summation over i
I don't know where to start. I'm sure it must involve some product rule.
but I'm not 100% sure whether or not \vec\nabla\cdot(\vec a \times \vec b) = (\vec b \times\vec\nabla\cdot\vec a) + (\vec a \times \vec\nabla\cdot\vec b) (or something resembling it)
...
...Right now I have no decent book with me and searching on the internet has done more harm than good.
If that identity correct I might (probably) be able to do the rest.
Homework Statement
prove \vec{\nabla}\cdot (\vec{a}\times\vec{b} ) = \vec{b} \cdot(\vec\nabla\times\vec{a}) - \vec{a}\cdot(\vec\nabla\times\vec{b})
Homework Equations
\vec a \times \vec b = \epsilon_{ijk}\vec a_j \vec b_k
\vec\nabla\cdot = \Large\frac{\partial}{\partial x_i}
summation over i
The Attempt at a Solution
I don't know where to start. I'm sure it must involve some product rule.
but I'm not 100% sure whether or not \vec\nabla\cdot(\vec a \times \vec b) = (\vec b \times\vec\nabla\cdot\vec a) + (\vec a \times \vec\nabla\cdot\vec b) (or something resembling it)
...
...Right now I have no decent book with me and searching on the internet has done more harm than good.
If that identity correct I might (probably) be able to do the rest.