- #1
- 682
- 1
what does
[tex]\left (\vec{A}\cdot \vec\nabla \right ) \vec B[/tex] mean?
[tex]\left (\vec{A}\cdot \vec\nabla \right ) \vec B[/tex] mean?
HallsofIvy said:Specifically
[tex](\vec{A}\cdot \nabla)\vec{B}= \vec{A}\cdot (\nabla\vec{B})= A_x\frac{\partial B_x}{\partial x}+ A_y\frac{\partial B_y}{\partial y}+A_z\frac{\partial B_z}{\partial z}[/tex]
Semo727 said:How can vector multiplyed by scalar give scalar??
tim_lou said:wait, hold on, so the correct result is arildno's? the operation gives you a vector..?
I WON!arunma said:I see we've turned mathematics into a democracy today. :rofl:
Yes, Arildno's explanation was the correct one.
what does [tex]\left (\vec{A}\cdot \vec\nabla \right ) \vec B[/tex]mean?
[tex](\vec{A}\cdot\nabla)\vec{B} = A_{x}\frac{\partial\vec{B}}{\partial{x}} + A_{y}\frac{\partial\vec{B}}{\partial{y}}+A_{z}\frac{\partial\vec{B}}{\partial{z}}[/tex]