(adsbygoogle = window.adsbygoogle || []).push({}); [SOLVED] Vector, cross product, and integral

1. The problem statement, all variables and given/known data

Evaluate:

[tex]{\int \textbf{F} \times \texttt{d}\textbf{v}}.[/tex]

[tex]\textbf{F}[/tex] and [tex]\textbf{v}[/tex] are both vector fields in [tex]\mathbb{R}^3[/tex]

2. Relevant equations

[tex]\texttt{d}\textbf{v} = (\nabla \otimes \textbf{v} ) \texttt{d}\textbf{r}[/tex]

3. The attempt at a solution

[tex]

\begin{array}{ll}

\textbf{F} \times \texttt{d}{\textbf{v}} &= \left( {

\begin{array}{c}

{F_2 \texttt{d}v_3 - F_3 \texttt{d}v_2 } \\

{F_1 \texttt{d}v_2 - F_2 \texttt{d}v_1 } \\

{F_1 \texttt{d}v_3 - F_3 \texttt{d}v_1 } \\

\end{array}

\right ) \\

&= \left(

\begin{array}{c}

{F_2 \nabla v_3 \cdot \texttt{d}{\textbf{r}} - F_3 \nabla v_3 \cdot \texttt{d}{\textbf{r}}} \\

{F_1 \nabla v_2 \cdot \texttt{d}{\textbf{r}} - F_2 \nabla v_1 \cdot \texttt{d}{\textbf{r}}} \\

{F_1 \nabla v_3 \cdot \texttt{d}{\textbf{r}} - F_3 \nabla v_1 \cdot \texttt{d}{\textbf{r}}} \\

\end{array} \right) \\

\end{array}[/tex]

This can then be solved as three path integrals over some path [tex]\textbf{r}[/tex]. Is this correct?

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Vector, cross product, and integral

**Physics Forums | Science Articles, Homework Help, Discussion**