Vector cross product with curl

Click For Summary
The discussion focuses on proving the vector identity involving the cross product of a vector field and its curl, specifically showing that v × curl v equals half the gradient of the dot product of v with itself minus the product of the gradient of v and v. Participants clarify the use of index-comma notation and the properties of the Levi-Civita symbol, particularly the identity relating the product of two Levi-Civita symbols to Kronecker deltas. There is a significant emphasis on correctly applying the properties of partial derivatives and ensuring that indices match throughout the derivation. The final consensus is that the correct interpretation of terms leads to the desired identity, with a suggestion to verify the last term's notation with a professor. The conversation illustrates the complexity of vector calculus identities and the importance of precision in mathematical notation.
hotvette
Homework Helper
Messages
1,001
Reaction score
11

Homework Statement


Using index-comma notation only, show:
\begin{equation*}
\underline{\bf{v}} \times \text{curl } \underline{\bf{v}}= \frac{1}{2} \text{ grad}(\underline{\bf{v}} \cdot \underline{\bf{v}}) - (\text{grad } \underline{\bf{v}}) \underline{\bf{v}}
\end{equation*}

Homework Equations


\begin{align*}
\text{ curl } \underline{\bf{v}} &= \epsilon_{ijk} v_{j,i} \underline{\bf{e}}_k \\
\underline{\bf{v}} \times \underline{\bf{u}} &= \epsilon_{ijk} v_i u_j \underline{\bf{e}}_k
\end{align*}

The Attempt at a Solution


If I let \underline{\bf{u}} =\text{ curl } \underline{\bf{v}} we get:
\begin{align*}
\underline{\bf{u}} &= \text{ curl } \underline{\bf{v}} =\epsilon_{prq} v_{r,p} \underline{\bf{e}}_q \\
u_j &= \epsilon_{prq} v_{r,p} \underline{\bf{e}}_q \cdot \underline{\bf{e}}_j \\
u_j &= \epsilon_{prq} v_{r,p} \delta_{qj} = \epsilon_{prj} v_{r,p} \\
\underline{\bf{v}} \times \underline{\bf{u}} &= \epsilon_{ijk} v_i u_j \underline{\bf{e}}_k \\
&= \epsilon_{ijk} \epsilon_{prj} v_i v_{r,p} \underline{\bf{e}}_k
\end{align*}
Is this correct so far? Trouble is, I'm not sure what to do next. I'm wondering if trying to simplify \epsilon_{ijk} \epsilon_{prj} would be a fruitful approach. Appreciate hints/tips. Thanks!
 
Last edited:
Physics news on Phys.org
hotvette said:
Is this correct so far? Trouble is, I'm not sure what to do next. I'm wondering if trying to simplify \epsilon_{ijk} \epsilon_{prj} would be a fruitful approach.
Looks correct to me. Yup, that approach is the way to go. This is a well-known identity,
\epsilon_{ijk} \epsilon_{\ell mk} = \delta_{i\ell} \delta_{jm} - \delta_{im} \delta_{j \ell}
for which there are several different ways to prove.
 
OK, I"m getting closer but (maybe) ran into another snag. Using the following:
\begin{equation*}
\epsilon_{ijk} = \epsilon_{jki} = \epsilon_{kij}
\end{equation*}
we get:
\begin{align*}
\epsilon_{ijk} \epsilon_{prj} &= \epsilon_{kij} \epsilon_{prj} = \delta_{ip} \delta_{jr} - \delta_{ir} \delta_{jp} \\
\underline{\bf{v}} \times \text{curl }\underline{\bf{v}} &=
(\delta_{ip} \delta_{jr} - \delta_{ir} \delta_{jp})(v_i v_{r,p}) \underline{\bf{e}}_k \\
&= v_i v_{r,p} \delta_{ip} \delta_{jr} \underline{\bf{e}}_k - v_i v_{r,p} \delta_{ir} \delta_{jp}\underline{\bf{e}}_k \\
\end{align*}
Looking at the LHS and comparing with the problem statement, we have:
\begin{align*}
v_i v_{r,p} \delta_{ip} \delta_{jr} \underline{\bf{e}}_k &= v_p v_{r,p} \delta_{jr} \underline{\bf{e}}_k \\
\frac{1}{2} \text{grad}(\underline{\bf{v}} \cdot \underline{\bf{v}}) &= \frac{1}{2} (v_i v_i)_{,j} \underline{\bf{e}}_j
= \frac{1}{2} ({v_i}^2)_{,j} \underline{\bf{e}}_j = v_j \underline{\bf{e}}_j
\end{align*}
Which means that v_p v_{r,p} \delta_{jr} \underline{\bf{e}}_k needs to reduce to v_j \underline{\bf{e}}_j.
Providing the Kronecker delta can alter partial derivative indices(which I'm not sure), we get:
\begin{align*}
v_p v_{r,p} \delta_{jr} \underline{\bf{e}}_k &= v_p v_{j,p} \underline{\bf{e}}_k \\
&= v_j \underline{\bf{e}}_j \text{ ??}
\end{align*}
It isn't clear to me why the last step is valid. It looks goofy to me because v_{j,p} = \frac{\partial v_j}{\partial x_p} which I think is a matrix of partial derivatives. Appreciate clarification/comment on that one. Now, to tackle the RHS...
 
Your claim that ##\frac 12(v_i^2)_{,j} = v_j## isn't correct. If you correct that, you'll see you're essentially done.
 
Maybe it's the same thing, but I think the last term should read ## v \cdot \nabla v ##. (This identity can be found on the cover of J.D. Jackson's Classical Electrodynamics in the form ## \nabla (a \cdot b) =a \cdot \nabla b +b \cdot \nabla a + a \times \nabla \times b + b\times \nabla \times a ##.)
 
Hmmm, is:
\begin{equation*}
\tfrac{1}{2} ({v_i}^2)_{,j} = v_i v_{i,j} \text{ ??}
\end{equation*}
If so, then I get:
\begin{align*}
v_p v_{j,p} \underline{\bf{e}}_k &= v_i v_{i,j} \underline{\bf{e}}_j && \text(a) \\
&= v_p v_{p,j} \underline{\bf{e}}_j &&\text{(b) for free index, ok to change}\\
&= v_p v_{j,p} \underline{\bf{e}}_j &&\text{(c) ok to switch indices on partial?}
\end{align*}
But then the basis vectors don't match :(
 
hotvette said:
We get:
\begin{align*}
\epsilon_{ijk} \epsilon_{prj} &= \epsilon_{kij} \epsilon_{prj} = \delta_{ip} \delta_{jr} - \delta_{ir} \delta_{jp}
\end{align*}
The free indices don't match. You're summing over ##j##, so it shouldn't appear on the righthand side.
 
Ah, thanks for pointing out the error! OK, I now get:
\begin{equation*}
\epsilon_{kij} \epsilon_{prj} = \delta_{kp} \delta_{ir} - \delta_{kr} \delta_{ip}
\end{equation*}
which gives:
\begin{align*}
\underline{\bf{v}} \times \text{curl }\underline{\bf{v}} &= (\delta_{kp} \delta_{ir} - \delta_{kr} \delta_{ip}) v_i v_{r,p} \underline{\bf{e}}_k \\
&= \delta_{kp} \delta_{ir} v_i v_{r,p} \underline{\bf{e}}_k - \delta_{kr} \delta_{ip} v_i v_{r,p} \underline{\bf{e}}_k \\
&= v_r v_{r,k} \, \underline{\bf{e}}_k - v_p v_{k,p} \, \underline{\bf{e}}_k
\end{align*}
For the LHS I now get a match but I still can't get the RHS to match:
\begin{align*}
&\underline{\bf{u}} = \text{grad } \underline{\bf{v}} = v_{i,j} \, \underline{\bf{e}}_i \otimes \underline{\bf{e}}_j && \text{(a)}\\
&\underline{\bf{u}} \underline{\bf{v}} = u_r v_p \, \underline{\bf{e}}_r \otimes \underline{\bf{e}}_p && \text{(b)}\\
&u_r = v_{i,r} \, \underline{\bf{e}}_i && \text{(c)}\\
& (\text{grad } \underline{\bf{v}}) \underline{\bf{v}} = (v_{i,r} \, \underline{\bf{e}}_i) v_p \, \underline{\bf{e}}_r \otimes \underline{\bf{e}}_p && \text{(d)} \\
&= v_p v_{i,r} \, (\underline{\bf{e}}_r \otimes \underline{\bf{e}}_p)\underline{\bf{e}}_i && \text{(e)} \\
&= v_p v_{p,r} \, \underline{\bf{e}}_r = v_p v_{p,k} \, \underline{\bf{e}}_k \ne v_p v_{k,p} \, \underline{\bf{e}}_k && \text{(f)}
\end{align*}
What am I doing wrong?
 
Last edited:
hotvette said:
Ah, thanks for pointing out the error! OK, I now get:
\begin{equation*}
\epsilon_{kij} \epsilon_{prj} = \delta_{kp} \delta_{ir} - \delta_{kr} \delta_{ip}
\end{equation*}
which gives:
\begin{align*}
\underline{\bf{v}} \times \text{curl }\underline{\bf{v}} &= (\delta_{kp} \delta_{ir} - \delta_{kr} \delta_{ip}) v_i v_{r,p} \underline{\bf{e}}_k \\
&= \delta_{kp} \delta_{ir} v_i v_{r,p} \underline{\bf{e}}_k - \delta_{kr} \delta_{ip} v_i v_{r,p} \underline{\bf{e}}_k \\
&= v_r v_{r,k} \, \underline{\bf{e}}_k - v_p v_{k,p} \, \underline{\bf{e}}_k
\end{align*}
Using what you said in post #6, the first term is ##\frac 12 (\vec{v}\cdot \vec{v})_{,k}\hat{e}_k=\frac 12 \nabla(\vec{v}\cdot \vec{v})##. The second term is ##(\nabla \cdot \vec{v})\vec{v}##. So you're essentially done. (As Charles pointed out, the last term in the original post is wrong.)
 
  • Like
Likes Charles Link
  • #10
I don't know this new notation very well= I write out all the partial derivative terms when I do a proof like this, but one suggestion would be to consider my post #5. The term should be ## v \cdot \nabla v ##, and not ## (\nabla v)v ## (or (grad v)v as you wrote it in the OP.)
 
  • #11
Ah, I understand now (I didn't know how to interpret post #5). I can now see that it works out if the last term is \underline{\bf{v}} \cdot \text{ grad} \, \underline{\bf{v}}. I'll check with my professor. Thanks!
 
  • Like
Likes Charles Link

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K