Vector under Chiral transformation

PhyAmateur
Messages
103
Reaction score
2
Was reading how do vectors transform under chiral transformation and found the following:

If $$V^\mu$$ is a vector; set $$ V^\mu = \bar{\psi} \gamma^\mu \psi= $$

$$\bar{\psi}\gamma^\mu e^{-i\alpha\gamma^5}e^{i\alpha\gamma^5}\psi =$$
$$\bar{\psi}\gamma^\mu\psi = V^\mu $$

My questions are why is it that vector takes the form $$V^\mu = \bar{\psi}\gamma^\mu\psi$$ and does the same thing apply to $$\partial_\mu$$ I mean is $$\partial_\mu$$ written as $$\bar{\psi}\gamma^\mu\psi$$ ?
 
Physics news on Phys.org
Thanks for the post! Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top