I Velocity addition via k-calculus

pervect
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
10,400
Reaction score
1,579
We had a thread a while ago where a poster was particularly interested in the SR rule of velocity addition. And in that thread, I suggested a better foundation was the k-calculus approach, with a reference to Bondi's treatment in "Relativity and Common Sense".

Here I would like to show how to derive the special relativity velocity addition rule using some results from the k-calculus approach.

K calculus basically says that if a light signal is transmitted via some observer O and received by some observer A, there will be a doppler shift such that the received frequency at A is some multiple k of the transmitted frequency from O. This factor k is only dependent on the relative velocity v between two observers, not the distance between them.

Using the results from Bondi, one can use a simple radar setup to determine the relationship between k and v given the fact that the speed of light is constant for all observers.

This is not particularly hard, but somewhat lengthly, and would require diagrams to illustrate clearly. I will summarize the important results from Bondi as the following relations between k and v.

$$k = \sqrt{ \frac{1-\beta}{1+\beta } } $$

$$v = c \, \frac{1-k^2}{1+k^2} $$

Here c is the speed of light, and ##\beta = v/c##.

The part that I wish to show is how to compute the velocity addition formula from these results. Suppose we now have 3 observers, O, A, and B. And there is some velocity ##v_1## between the pair of observers (O,A), and some velocity ##v_2## between the pair of observers (A,B). We wish to find the velocity between the pair of observers (O,B), which we will denote as ##v_t##. We will also use the notation that ##\beta_1 = v_1/c## and ##\beta_2 = v_2/c##.

When we reformulate this in terms of doppler shift, we will note that there is some k-factor ##k_1## between observers (O,A) and some k-factor ##k_2## between observers (A,B). And we can conclude that the k factor between (O,B) is just the product of k_1 and k_2, namely.

$$k_t = k_1 * k_2$$

To see why this is true, take an example. Observer A emits light, whose frequency is multipled by some factor k_1, which we will take as 1/2, so that the frequency received by A is 1/2 the frequency emitted by O. Similarly, when B emits light, there will be some factor k_2, which we will take as 1/3, so that in the example observer B receives light at 1/3 the frequency emitted by A. We can then conclude that observer B in this example receives light at 1/6 the frequency as emitted by O, and more generally that the k-factor between O and A is just k_1 * k_2

The rest is algebra, which is perhaps slightly messy, but it's still just algebra. We write

$$k_t = \sqrt{ \frac{1-\beta_1} {1+\beta_1} \cdot \frac{1-\beta_2} {1+\beta_2} }$$
$$v_t = \frac{1-k_t{}^2}{1+k_t{}^2}$$

And when we simplify this we find

$$v_t = c \, \frac{\beta_1 + \beta_2} {1+\beta_1 \beta_2}$$

the expected velocity addition formula of special relativity.
 
Physics news on Phys.org
You should post this as an Insight. In the forums it will just be lost among 200 threads misunderstanding the relativity of simultaneity.
 
For what it's worth, there is a Wikipedia article Bondi k-calculus with lots of diagrams. (Disclosure: I wrote most of it.)

 
  • Like
  • Love
Likes Ibix and malawi_glenn
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top