Velocity of a relativistic particle in a uniform magnetic field

Click For Summary
The discussion focuses on solving for the velocity of a relativistic particle in a uniform magnetic field, starting from the equation d(ɣmv)/dt = qvB. It highlights the confusion around solving for velocity, noting that the force is orthogonal to velocity, which means the speed remains constant and (dɣ/dt) = 0. The conversation suggests using proper time (τ) to simplify calculations and emphasizes the importance of distinguishing between speed and velocity. Additionally, it raises the consideration of the particle's orbit, indicating that parameters like radius, period, and frequency may be relevant for expressing speed. The overall aim is to clarify the relationship between the magnetic force and the particle's motion.
B Rylen
Messages
1
Reaction score
1
Homework Statement
I am trying to solve for the velocity of a relativistic particle in a magnetic field using magnetic force (F = q(v x B)) and F = dp/dt (where p = ɣmv) and equating the two equations to each other. However, I stuck on how to isolate v in this setup.
Relevant Equations
F = dp/dt = d(ɣmv)/dt
F = q(v x B)
ɣ = 1/sqrt(1-(v/c)^2)
d(ɣmv)/dt = qvB
(dɣ/dt)mv + ɣm(dv/dt) = qvB
Substituting gamma in and using the chain rule, it ends up simplifying to the following:
ɣ^3*m(dv/dt) = qvB

Now, I am confused on how to solve for v.
 
Physics news on Phys.org
B Rylen said:
(dɣ/dt)mv + ɣm(dv/dt) = qvB
Your problem is one of using scalars instead of vectors. The force is orthogonal to velocity so the speed is constant. Hence (dɣ/dt) = 0.
 
  • Like
  • Love
Likes B Rylen, Delta2, vanhees71 and 1 other person
It should also be mentioned that dv/dt (where v is the speed and not velocity) is also equal to zero.
 
  • Like
  • Love
Likes Delta2, vanhees71 and malawi_glenn
Another possibility is to solve the manifestly covariant equations using the proper time ##\tau## as the parameter of the trajectory/world line. This usually simplifies such calculations!
 
B Rylen said:
Homework Statement:: I am trying to solve for the velocity of a relativistic particle in a magnetic field using magnetic force (F = q(v x B)) and F = dp/dt (where p = ɣmv) and equating the two equations to each other.
Are you assuming that the particle is orbiting in a plane perpendicular to the field? If so, you will need to choose which parameters you want to use for expressing the speed v. Besides q, B, and m there is the radius R of the orbit, the period T of the orbit, and the frequency f (or angular frequency ω) of the orbit.
 
Last edited:
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
Replies
19
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
Replies
16
Views
3K
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K