Velocity of a relativistic particle in a uniform magnetic field

B Rylen
Messages
1
Reaction score
1
Homework Statement
I am trying to solve for the velocity of a relativistic particle in a magnetic field using magnetic force (F = q(v x B)) and F = dp/dt (where p = ɣmv) and equating the two equations to each other. However, I stuck on how to isolate v in this setup.
Relevant Equations
F = dp/dt = d(ɣmv)/dt
F = q(v x B)
ɣ = 1/sqrt(1-(v/c)^2)
d(ɣmv)/dt = qvB
(dɣ/dt)mv + ɣm(dv/dt) = qvB
Substituting gamma in and using the chain rule, it ends up simplifying to the following:
ɣ^3*m(dv/dt) = qvB

Now, I am confused on how to solve for v.
 
Physics news on Phys.org
B Rylen said:
(dɣ/dt)mv + ɣm(dv/dt) = qvB
Your problem is one of using scalars instead of vectors. The force is orthogonal to velocity so the speed is constant. Hence (dɣ/dt) = 0.
 
  • Like
  • Love
Likes B Rylen, Delta2, vanhees71 and 1 other person
It should also be mentioned that dv/dt (where v is the speed and not velocity) is also equal to zero.
 
  • Like
  • Love
Likes Delta2, vanhees71 and malawi_glenn
Another possibility is to solve the manifestly covariant equations using the proper time ##\tau## as the parameter of the trajectory/world line. This usually simplifies such calculations!
 
B Rylen said:
Homework Statement:: I am trying to solve for the velocity of a relativistic particle in a magnetic field using magnetic force (F = q(v x B)) and F = dp/dt (where p = ɣmv) and equating the two equations to each other.
Are you assuming that the particle is orbiting in a plane perpendicular to the field? If so, you will need to choose which parameters you want to use for expressing the speed v. Besides q, B, and m there is the radius R of the orbit, the period T of the orbit, and the frequency f (or angular frequency ω) of the orbit.
 
Last edited:
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top