Velocity of a relativistic particle in a uniform magnetic field

B Rylen
Messages
1
Reaction score
1
Homework Statement
I am trying to solve for the velocity of a relativistic particle in a magnetic field using magnetic force (F = q(v x B)) and F = dp/dt (where p = ɣmv) and equating the two equations to each other. However, I stuck on how to isolate v in this setup.
Relevant Equations
F = dp/dt = d(ɣmv)/dt
F = q(v x B)
ɣ = 1/sqrt(1-(v/c)^2)
d(ɣmv)/dt = qvB
(dɣ/dt)mv + ɣm(dv/dt) = qvB
Substituting gamma in and using the chain rule, it ends up simplifying to the following:
ɣ^3*m(dv/dt) = qvB

Now, I am confused on how to solve for v.
 
Physics news on Phys.org
B Rylen said:
(dɣ/dt)mv + ɣm(dv/dt) = qvB
Your problem is one of using scalars instead of vectors. The force is orthogonal to velocity so the speed is constant. Hence (dɣ/dt) = 0.
 
  • Like
  • Love
Likes B Rylen, Delta2, vanhees71 and 1 other person
It should also be mentioned that dv/dt (where v is the speed and not velocity) is also equal to zero.
 
  • Like
  • Love
Likes Delta2, vanhees71 and malawi_glenn
Another possibility is to solve the manifestly covariant equations using the proper time ##\tau## as the parameter of the trajectory/world line. This usually simplifies such calculations!
 
B Rylen said:
Homework Statement:: I am trying to solve for the velocity of a relativistic particle in a magnetic field using magnetic force (F = q(v x B)) and F = dp/dt (where p = ɣmv) and equating the two equations to each other.
Are you assuming that the particle is orbiting in a plane perpendicular to the field? If so, you will need to choose which parameters you want to use for expressing the speed v. Besides q, B, and m there is the radius R of the orbit, the period T of the orbit, and the frequency f (or angular frequency ω) of the orbit.
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top